
ABSTRACT

LONG, COLBY EDWARD. Algebraic Geometry of Phylogenetic Models. (Under the
direction of Seth Sullivant.)

A phylogenetic model is a statistical model of the evolutionary relationships between

a group of species. The Zariski closure of the set of probability distributions associated

to a phylogenetic model is an algebraic variety and the ideal of this variety is the ideal

of phylogenetic invariants for the model. These invariants have proven useful both for

phylogenetic reconstruction and for determining properties of the models, such as whether

or not the parameters are identifiable. In this thesis, we use the tools of algebraic statistics

and algebraic geometry to prove several results for phylogenetic models.

First, we prove that the tree parameters of the 3-class Jukes-Cantor mixture model

are identifiable. The proof uses ideas from algebraic statistics, in particular: finding phy-

logenetic invariants that separate the varieties associated to different triples of trees;

computing dimensions of the resulting phylogenetic varieties; and using the disentan-

gling number to reduce to trees with a small number of leaves. Symbolic computation

also plays a key role in handling the many different cases and finding relevant phylogenetic

invariants.

Next, we determine defining equations for the ideal of the strand symmetric model.

The strand symmetric model is a phylogenetic model designed to reflect the symme-

try inherent in the double-stranded structure of DNA. We show that the set of known

phylogenetic invariants for the general strand symmetric model of the 3-leaf claw tree

entirely defines the ideal. This knowledge allows one to determine the vanishing ideal of

the general strand symmetric model on any binary tree. Our proof of the main result is

computational. We use the fact that the Zariski closure of the strand symmetric model

is the secant variety of a toric variety to compute its dimension. We then show that

the known equations generate a prime ideal of the correct dimension using elimination

theory.

Finally, we study 2-class mixtures of the binary Jukes-Cantor model. The ideal of

phylogenetic invariants of a phylogenetic mixture model on trees with the same topology

is a secant ideal. It has been shown that the Hilbert series of the ideal of the binary

Jukes-Cantor model on an n-leaf tree is independent of the tree topology. We show that

for trees with six or fewer leaves the same result holds for secants of these ideals and



conjecture that this is true for all n. We also resolve a conjecture about a class of binomial

initial ideals of I2,n, the ideal of the Grassmannian, Gr(2,Cn), which are associated to

phylogenetic trees. For a weight vector ω in the tropical Grassmannian, inω(I2,n) = JT is

the ideal associated to the tree T . The ideal generated by the 2r × 2r subpfaffians of a

generic n×n skew-symmetric matrix is precisely I
{r−1}
2,n , the (r−1)-secant of I2,n. We prove

necessary and sufficient conditions on the topology of T in order for inω(I2,n)
{2} = J

{2}
T .

We also give a new class of prime initial ideals of the Pfaffian ideals.
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Chapter 1

Introduction

Phylogenetics is the field which seeks to untangle the evolutionary relationships between

species. Researchers construct phylogenetic models designed to model the process of

molecular sequence evolution and compare the results to existing biological data. The

goal is to infer species trees which have applications in evolutionary biology, epidemiology,

and species conservation [SS03]. While essential to our understanding of evolution, recon-

structing trees is far from straigthtforward. Biological phenomena such as hybridization,

horizontal gene transfer, and incomplete lineage sorting all complicate the evolutionary

picture. Moreover, a weak phylogenetic signal or a paucity of data can make the task

even more difficult. Thus, there are a number of theoretical issues that must be resolved

in order to interpret the data and ensure inference is consistent. This is done with a vari-

ety of mathematical tools from several fields, including discrete mathematics, probability

and statistics, and algebraic geometry.

Our primary tool for studying several different phylogenetic models of DNA evolution

will be algebraic geometry. In this chapter, we begin with a description of the basic

components and construction of phylogenetic models. We then reexamine them from the

perspective of algebraic geometry and establish the terminology, notation, and tools that

we require for the later chapters.

1.1 Phylogenetic Models

A central problem in phylogenetics is to describe the evolutionary history of n species

from their aligned DNA sequences. In this case, statistical models are constructed on a
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tree T to mimic the process of molecular evolution at a single locus.

Definition 1.1.1. A tree T = (V,E) is a connected acyclic graph with vertex set V and

edge set E.

Definition 1.1.2. A vertex of T of degree at most one is called a leaf. The vertices that

are not leaves are called interior vertices.

In our models, the leaves of T correspond to the species under consideration. Thus,

most often we will be dealing with phylogenetic X-trees. A phylogenetic X-tree is an

ordered pair T = (T,φ) where T is a tree and φ is a bijective function from a label set

X to the set of leaf vertices of T . Typically, our label set will be X = [n] ∶= {1, . . . , n}.

Additionally, we assume that the tree parameter is binary.

Definition 1.1.3. A tree is binary if every interior vertex has degree three.

The binary assumption on the tree parameter reflects our assumptions about the

process of evolution. We think of each interior vertex of the tree as corresponding to an

ancestral species for which no data is available. At each interior vertex, a speciation event

occurs wherein the ancestral species diverges into two different species.

Removing an edge from a binary phylogenetic X-tree T creates two connected com-

ponents. The labels in each component form a partition {B,B′} of the leaf label set

which we refer to as an X-split or more simply a split when the set X is understood. We

use the notation B∣B′ to denote splits and Σ(T ) to denote the set of all splits of T . A

split in which either ∣B∣ or ∣B′∣ = 1 is called a trivial split since it is a split of every binary

phylogenetic X-tree.

Example 1.1.4. For the 5-leaf binary phylogenetic X-tree T pictured below, X = [5]

and

Σ(T ) = {1∣2345,2∣1345,3∣1245,4∣1235,5∣1234,12∣345,34∣125}.

The set of trivial splits is {1∣2345,2∣1345,3∣1245,4∣1235,5∣1234}.
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A phylogenetic X-tree is uniquely determined by its set of splits. This is the result of

the well-known Splits-Equivalence Theorem [SS03, p. 44]. This result also gives necessary

and sufficient conditions on an arbitrary set of splits in order for there to exist an X-tree

displaying that set of splits. For this reason, we are justified in distinguishing trees by

their sets of splits and indexing edges by the splits they induce.

From the evolutionary standpoint, it makes sense to distinguish one interior vertex

as the common ancestor of all of our species and to think of the process of evolution as

directional away from this vertex.

Definition 1.1.5. A rooted binary phylogenetic X-tree is a phylogenetic X-tree where

each interior vertex has degree three except one interior vertex which has degree two. We

call the distinguished vertex of degree two the root and denote it ρ.

Thus, the underlying tree parameter of the phylogenetic model is a rooted binary

phylogenetic X-tree T with X = [n] (as pictured in Example 1.1.7). To each vertex v

we associate a random variable Xv with state space {A,C,G,T} corresponding to the four

DNA bases. For the unique edge e between nodes v and w, the 4 × 4 transition matrix

Ae is the matrix with Aeij = P (Xv = i∣Xw = j). The entries of the transition matrices are

called the numerical parameters.

Definition 1.1.6. The n-dimensional probability simplex is the set

∆n = {(x1, . . . , xn+1) ∈ Rn+1 ∶ xi ≥ 0 and
n+1

∑
i=1

xi = 1} .

The root distribution of a phylogenetic model is the vector π = (πA, πC , πG, πT ) ∈ ∆3

where P (Xρ = i) = πi. For any assignment of states to the vertices of T , we can use

the transition matrices and root distribution to calculate the probability of observing

that particular state. The following explanation for how this is done is adapted from

[SS03, Ch. 8] where the formal framework is fully developed. It is intuitive if we think

of the process of evolution at a particular site unfolding along a tree. It may be helpful

to refer to Example 1.1.7 which demonstrates the calculation for a simplified model of

DNA evolution.

We view the edges of T as directed away from the root and define a total order on

the vertex set V . This order must satisfy that for each edge vw of the tree, w < v if w is

the vertex closer to the root. Let χ ∶ V → σ be an assignment of states to the vertices.

We then insist that the random variables satisfy the Markov property, that is,
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P (Xv = χ(v)∣ ⋂
u<v

Xu = χ(u)) = P (Xv = χ(v)∣Xw = χ(w)).

This implies that the probability of observing a mutation between species depends

only on the state of the immediate ancestor. Combining the product rule of conditional

probability with the Markov property gives us

P (⋂
u≤v

Xu = χ(u)) = P (Xv = χ(v)∣ ⋂
u<v

Xu = χ(u)) = P (Xv = χ(v)∣Xw = χ(w)).

Note that the last term of this expression is an entry of the transition matrix associated

to the edge vw. Iteratively applying the product rule and using the entries of the transition

matrices for the conditional probabilities gives us

P (⋂
u∈V

Xu = χ(u)) = πχ(ρ) ∏
e=uv∈E(T )

Aeχ(v),χ(w) (1.1)

Our primary interest is in determining the probability of observing a particular n-

tuple of states at the leaves. Thus, for a fixed n-tuple we marginalize over all possible

states of the interior vertices to obtain the probability of observing that n-tuple at the

leaves. Once we have fixed T , each choice of numerical parameters gives us a probability

distribution on the 4n distinct n-tuples of DNA bases in ∆4n−1.

While the 4-state model of DNA evolution serves as our motivating example we may

also wish to consider other phylogenetic models with different state spaces. For example,

the binary Jukes-Cantor model or Cavender-Farris-Neyman (CFN) model is a two-state

phylogenetic model useful for modeling the evolution of purine (A,G) and pyrimidine (C,T)

sequences. We may also look at sequences at the level of codons which are sequences of

three DNA bases that code for the 20 different amino acids. While there are 64 possible

three nucleotide sequences, only 61 of these that actually code for amino acids. Thus, the

codon model is a 61-state model of codon evolution. Or, we may group together codons

that code for the same amino acid, and model the evolution of amino acid sequences via

a 20-state model.

In general, if we let σ be the state space of the k-state random variables associated
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to each node of the tree then there are kn possible states at the leaves and each choice

of numerical parameters yields a probability distribution on the elements of σn. For a

fixed tree, this gives a map from the space of numerical parameters into the probability

simplex, ψT ∶ ΘT →∆kn−1 ⊆ Rkn .

Example 1.1.7. Consider the CFN model (k = 2) for three species. We let σ = {0,1} be

the state space where 0 and 1 represent purines (A,G) and pyrimidines (C,T) respectively.

The tree parameter T is a 3-leaf binary phylogenetic X-tree with label set X = [3].

The leaves correspond to three distinct species. There are two interior vertices of T , the

root, ρ, and v4. The edges are labeled by their 2 × 2 transition matrices with rows and

columns indexed by {0,1}.

The set of numerical parameters for this model is {π0, π1, α1, β1, α2, β2, α3, β3, α4, β4}.

Although there are ten parameters, the parameter space is only 4-dimensional as we

must have αi +βi = 1 for 1 ≤ i ≤ 4 and because we insist that for the CFN model the root

distribution is uniform, that is, π = (1
2 ,

1
2).

For what follows let pi1i2i3 ∶= P (Xv1 = i1,Xv2 = i2,Xv3 = i3) and pi1i2i3i4i5 ∶= P (Xv1 =

i1,Xv2 = i2,Xv3 = i3,Xv4 = i4,Xρ = i5). As an example, we will compute p011, the proba-

bility that at a particular DNA locus, there is a purine in the sequence of the first species
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and a pyrimidine in the sequences of the other two species. We marginalize over all of

the unobserved states of the internal vertices, so

p011 = p01100 + p01110 + p01101 + p01111.

Based on the preceding discussion and (1.1) in particular, we see that this is a poly-

nomial with four terms,

p011 = π0α1β2β3α4 + π0β1α2β3β4 + π1α1β2α3β4 + π1β1α2α3α4.

Each point in the image of ψT is a probability distribution in R8. The coordinates of

R8 are indexed by the eight possible states at the leaves so that a generic point is of the

form

(p000, p001, p010, p100, p011, p101, p110, p111) ∈ R8.

Notice that each of these coordinates is parameterized by a degree 5 polynomial in the

numerical parameters as was shown for p011.

For model-based reconstruction, we assume that the DNA sites are independent and

that the distribution of n-tuples of DNA bases is the same at each site. The goal is then to

find a choice of parameters that yields a distribution close to that observed in the aligned

DNA sequences. Suppose, for example, that we observe the n-tuple ACTTG at .01% of the

sites of the aligned DNA sequences of five species. Then we would like to find a model

and choice of parameters where pACTTG ≈ .0001, and of course, we would also like to

match as closely as possible the site pattern frequencies of the other n-tuples. If we are

able to find such a model then it reasonable to assume that it is a good approximation of

the process that produced our sequences. In particular, we infer that the tree parameter

of the model is the phylogeny of the species.

One approach to actually finding a model that matches our distribution is maximum

likelihood estimation [Fel81, SS03]. This is the process of finding the parameter pair

(T , θ), where T is a binary phylogenetic X-tree and θ is the associated set of numerical

parameters, that maximizes the probability of producing the observed data. Even for a

fixed tree, computing the maximum likelihood estimation of the numerical parameters is

a difficult problem. Moreover, because there are (2n− 3)!! = 1 ⋅ 3 ⋅ 5 ⋅ . . . ⋅ (2n− 5) ⋅ (2n− 3)

n-leaf rooted binary phylogenetic X-trees, computing this estimation over the set of all

such trees becomes infeasible as n increases. In practice, heuristic methods work well
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enough that maximum likelihood estimation is widely used in phylogenetics. One can

also take a Bayesian approach to phylogenetic reconstruction, though as noted in [SS03],

this is less frequently used because of the difficulty in specifying a prior distribution on

the pairs (T , θ).

This model-based approach raises a serious concern about the identifiability of the

parameters of the model. A model parameter is identifiable if a distribution coming from

the model uniquely determines the parameter that produced it. Of particular importance

for phylogenetic inference is the identifiability of the tree parameter. Indeed, there is no

way to infer the true phylogeny if multiple models with different tree parameters explain

our data equally well. One important application of algebraic geometry to phylogenetics

has been proving that different phylogenetic models are identifiable (See e.g., [ARS12,

MMS08, MS07, RS12].)

We obtain different phylogenetic models by placing various restrictions on the entries

of the transition matrices. For example, the Jukes-Cantor (JC) model of DNA evolution

is a 4-state model where we assume Aeij = α if i = j and Aeij = β otherwise. In other

words, we assume that along each edge there is some probability of mutation and if a

mutation occurs it does so with equal likelihood to any of the other DNA bases. Thus,

the transition matrices for the Jukes-Cantor model have the structure depicted in Figure

1.1c.

At the other extreme for DNA models, the 4-state general Markov model imposes

only the stochastic condition on the rows of the transition matrices. That is, each row

of Ae belongs to ∆3. While this model allows greater flexibility, it is more difficult to

determine its properties, such as whether or not it is identifiable. Existing somewhere in

between these two extremes are the Kimura 2-parameter (K2P) and Kimura 3-parameter

models (K3P) which are designed to better reflect the realities of DNA substitution. The

transition matrices for several of these models are shown in Figure 1.1.

The set of all possible distributions we obtain by varying the numerical parameters

is what we call the model. We denote the model MT and observe that MT = Im(ψT ).

Though our notation involves only T , as per the discussion above, it is possible to have

different models on the same tree. For example, the set of probability distributions asso-

ciated to the CFN model on T and the K2P model on T will not be the same set and are

not even contained in the same space. However, in all of our discussions the particular

restrictions on the transition matrices will be clear from context and no further notation

7



⎛
⎜
⎜
⎜
⎝

α β γ γ
β α γ γ
γ γ α β
γ γ β α

⎞
⎟
⎟
⎟
⎠

(a) K2P

(
α β
β α

)

(b) CFN

⎛
⎜
⎜
⎜
⎝

α β β β
β α β β
β β α β
β β β α

⎞
⎟
⎟
⎟
⎠

(c) JC

⎛
⎜
⎜
⎜
⎝

α β γ δ
β α δ γ
γ δ α β
δ γ β α

⎞
⎟
⎟
⎟
⎠

(d) K3P

Figure 1.1: Transition matrices for phylogenetic models.

is needed.

For all of the models discussed in this thesis the location of the root vertex is uniden-

tifiable [AR07]. This means that if T and T ′ differ only by the location of their root

vertex then MT = MT ′ . For this reason, despite the intuitive appeal of rooted trees for

modeling evolution, all of the tree parameters that we consider will be unrooted. Given

an assignment of states to the vertices, we compute the probability of observing that

state by regarding any vertex as the root and proceeding as in Example 1.1.7. Propo-

sition 1.1.8 implies that for a k-state model each coordinate function of ψT is a degree

2n − 3 polynomial in the numerical parameters with kn−2 terms.

Proposition 1.1.8. [SS03] Let T be a binary phylogenetic X-tree (unrooted) and let

n = ∣X ∣. Then, for all n ≥ 2, T has 2n − 3 edges and n − 2 interior vertices.

One other type of phylogenetic model that we will consider in Chapter 2 is a mixture

model. Mixture models account for the fact that different portions of DNA may evolve

differently due to issues such as incomplete lineage sorting, horizontal gene transfer, and

different rates of mutation across sites [DR09]. The idea is to weight the distributions

from multiple models according to the proportion of data that evolved according to each

to produce a single probability distribution. Therefore, if si is a choice of numerical

parameters for the k-state model associated to the tree Ti, the r-th mixture model is the

closure of the image of the map

ψT1,...,Tr ∶ ΘT1 × . . . ×ΘTr ×∆r−1 →∆kn−1,
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where (s1, . . . , sr, π) ↦ π1ψT1(s1) + . . . + πrψTr(sr). We use the notation MT1 ∗ . . . ∗MTr

for the set of distributions of the mixture model. Just as with the general Markov model,

the additional parameters in phylogenetic mixture models make them both more flexible

and more difficult to analyze.

1.2 The Algebraic Perspective

We may study phylogenetic models by finding algebraic relationships between coordinates

satisfied by all points in MT . To do so, we associate algebraic objects to the models

and analyze them using tools from algebraic geometry. The rest of this thesis relies

heavily on this algebraic perspective. In this section we demonstrate the connections

between algebraic geometry and phylogenetic models. In Section 1.3, we discuss the

theory that underlies many of the tools of algebraic geometry that we deploy in the

subsequent chapters. Most of the standard notation, definitions, and results are adapted

from [Eis04, Has07].

Let K be an algebraically closed field of characteristic zero and let K[x] = K[x1, . . . , xn]

denote the algebra of polynomials in the variables x1, . . . , xn over K.

Definition 1.2.1. Given S ⊆ Kn, the vanishing ideal of S is

I(S) ∶= {f ∈ K[x1, . . . , xn] ∶ f(s) = 0 for each s ∈ S}.

For a phylogenetic model, IT ∶= I(MT ) ⊆ C[pi ∶ i ∈ σn] is called the ideal of phylo-

genetic invariants and the elements of IT are called phylogenetic invariants. Recall that

the number of leaves of the tree parameter is n and that σn is the set of n-tuples of the

elements of the state space σ. The variable pi is the probability of observing the n-tuple

i at the leaves. The study of phylogenetic invariants was originally proposed as a method

for reconstructing phylogenetic trees [CF87, Lak87], but as mentioned above, they have

also been useful for proving identifiability results.

Theorem 1.2.2 (Hilbert Basis Theorem). Every polynomial ideal in K[x] is finitely

generated.

In light of the Hilbert Basis Theorem, often we will be interested in finding a finite

set of polynomials that generate IT .
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Example 1.2.3. For the phylogenetic model from Example 1.1.7,

IT ⊆ C[p000, p001, p010, p100, p011, p101, p110, p111].

Since all of the transition matrices are symmetric, it is not surprising that, for example,

p001 = p110. In this case, the ideal of phylogenetic invariants is entirely generated by such

linear relations along with the trivial invariant forced by the stochastic condition on our

parameters.

IT = ⟨p000 − p111, p100 − p011, p010 − p101, p001 − p110,

p000 + p001 + p010 + p100 + p011 + p101 + p110 + p111 − 1⟩.

Example 1.2.4. Let T be the 4-leaf tree with nontrivial split 12∣34. Modulo the linear

invariants,

IT ⊆ C[p0000, p0001, p0010, p0011, p0100, p0101, p0110, p0111]

Here, we will ignore the stochastic assumption on the parameters so that the trivial

invariant is not contained in the ideal of phylogenetic invariants. This makes the ideal

of phylogenetic invariants a homogeneous ideal. The advantages of doing this will be-

come evident in Chapter 2 and are related to the discussion in Section 1.3 surrounding

homogeneous ideals and projective varieties.

In this case, the ideal of phylogenetic invariants is generated by two quadratic equa-

tions,

IT = ⟨p0010p0100 − p0011p0101 − p0000p0110 + p0001p0111,

p0001p0100 − p0000p0101 − p0011p0110 + p0010p0111⟩.

Definition 1.2.5. An affine variety is the locus where a collection of polynomials is

satisfied. Given F ⊆ K[x1, . . . , xn],

V (F ) ∶= {a ∈ Kn ∶ f(a) = 0 for all f ∈ F}.

The set F is said to define the variety. The Zariski topology on Kn is the topology in

10



which a set is closed if and only if it is an affine variety. The closure of S ⊆ Kn in the

Zariski topology is S ∶= V (I(S)). For a phylogenetic model, the variety of the model is

VT ∶= MT .

The algebraic perspective also applies to mixture models. In the language of algebraic

geometry, MT1 ∗ . . . ∗MTr = VT1 ∗ . . . ∗ VTr , the join of the varieties VT1 , . . . , VTr .

Definition 1.2.6. The join of the algebraic varieties V1, . . . , Vr is the set

V1 ∗ . . . ∗ Vr = {π1v1 + . . . + πrvr ∶ vi ∈ Vi and π1 + . . . + πr = 1}.

Put another way, the join is the closure of the union of all linear spaces spanned by

one point from each variety in the join. In the case where V1 = . . . = Vr this is called

the r-secant variety and we use the notation V {r} for the r-secant variety of V . Letting

Ij ∶= I(Vj) ⊆ K[x], we define I1 ∗ . . . ∗ Ir ∶= I(V1 ∗ . . . ∗ Vr) ⊆ K[x] to be the join (or

r-secant) ideal. As for varieties, I{r} is the r-secant ideal of I.

In order to compute the join ideal we introduce r(n+ 1) new unknowns grouped into

r vectors of the form yj ∶= (yj1, . . . , yjn) and π = (π1, . . . , πr). We then construct the ring

of rn + r + n variables K[x,y,π]. We define the ideal Ij(yj) to be the image of the ideal

Ij under the map xi ↦ yji.

Proposition 1.2.7. [SS06] The join ideal I1 ∗ . . . ∗ Ir is equal to

(I1(y1) + . . . + Ir(yr) + ⟨π1y1i + . . . + πryri − xi ∶ 1 ≤ i ≤ n⟩ + ⟨π1 + . . . + πr − 1⟩) ∩K[x].

This proposition gives us a way to express the ideal of phylogenetic invariants for a

mixture model IT1 ∗ . . .∗ITr in terms of the ideals of the constituent models. However, to

actually compute a generating set for IT1 ∗ . . . ∗ ITr requires the theory of Gröbner bases

and elimination.

1.3 Gröbner Bases and Applications

In this section, we discuss Gröbner bases which form the theoretical foundation for much

of the computational algebraic geometry presented in this thesis.

Definition 1.3.1. A monomial of K[x] is an element of the form xα = xα1
1 . . . xαn

n for

α ∈ Nn.

11



Definition 1.3.2. A monomial order is a total order ≺ on the set of monomials of K[x]

that satisfies

(i) Multiplicative Property: if xα ≺ xβ then xγxα ≺ xγxβ.

(ii) Well Ordering: An arbitrary set of monomials {xα}α∈A has a least element.

Example 1.3.3. The standard lexicographic order defined by xα ≺ xβ if and only if the

leftmost nonzero entry of α−β is less than zero is a monomial order. Let ≺ be the standard

lexicographic order in the ring C[x1, x2, x3]. Then,

x3
1x

4
2x

5
3 ≺ x

3
1x

6
2x3

since the leftmost nonzero entry of (3,4,5) − (3,6,1) = (0,−2,4) is −2.

Definition 1.3.4. Fix a monomial order ≺ on K[x] and consider a polynomial

f = ∑
α∈A

cαx
α ∈ K[x],

where each cα /= 0. Let xα be the largest monomial of f with respect to ≺. Then the initial

term of f is in≺(f) ∶= cαxα.

Definition 1.3.5. For an ideal I ⊆ K[x], the initial ideal of I with respect to ≺ is the

ideal

in≺(I) ∶= ⟨in≺(f) ∶ f ∈ I⟩.

Definition 1.3.6. Let I ⊆ K[x] be an ideal. A finite set of polynomials {f1, . . . , fk} ⊆ I

forms a Gröbner basis for I if in≺(I) = ⟨in≺(f1), . . . , in≺(fk)⟩.

A priori, it is not clear that every ideal has a Gröbner basis. In fact, not only is this

the case, but Buchberger’s algorithm is an algorithm that takes as input any generating

set for an ideal and returns a Gröbner basis for that ideal with respect to a given term

order. A short proof also shows that a Gröbner basis for I with respect to any term order

is also a generating set [Has07].

Example 1.3.7. Let ≺ be the standard lexicographic order on the ring C[x, y, z]. Let

f1 = x3 + y2z, f2 = xy − z2, and

I = ⟨f1, f2⟩ ⊆ C[x, y, z]

12



Then in≺(f1) = x3 and in≺(f2) = xy. Since I is an ideal, it also contains

f3 = yf1 − x
2f2 = x

2z2 + y3z.

Then in≺(f3) = x2z2 /∈ ⟨x3, xy⟩. Therefore, the set {f1, f2} is not a Gröbner basis for I

with respect to the standard lexicographic term order. A Gröbner basis for I with respect

to this term order is given by

{y5z + z6, xz4 + y4z, xy − z2, x2z2 + y3z, x3 + y2z}.

and

in≺(I) = ⟨y5z, xz4, xy, x2z2, x3⟩.

In Chapter 4 we will also wish to consider initial ideals with respect to partial mono-

mial orders.

Definition 1.3.8. Let ω ∈ Nn. Define the ω-weight of the monomial xα to be ω(xα) ∶=

ω ⋅ α. Then ≺ω is the partial monomial order given by xα ≺ω xβ ⇐⇒ ω(xα) < ω(xβ).

Definition 1.3.9. Let f = ∑
α∈A

cαx
α ∈ K[x], with each cα /= 0. The initial form of f with

respect to ≺ω is

inω(f) ∶= ∑
γ∈Γ

cγx
γ

where Γ = {γ ∈ A ∶ ω(xγ) = max
α∈A

ω(xα)}.

Likewise, for an ideal I ⊆ K[x] we define inω(I) ∶= ⟨inω(f) ∶ f ∈ I⟩.

Example 1.3.10. Let ω = (3,1,2), then for the polynomials f1 and f2 from Example

1.3.7, inω(f1) = x3 since ω(x3) = (3,1,2) ⋅ (3,0,0) = 9 and ω(y2z) = (3,1,2) ⋅ (0,2,1) = 4.

Both monomials of f2 have weight four, so inω(f2) = xy − z2.

Example 1.3.10 illustrates that ≺ω is not necessarily a monomial order. As a conse-

quence, inω(I) is not necessarily a monomial ideal. Still, in some sense, every monomial

order can be realized in this way.

Proposition 1.3.11. [Stu96, Proposition 1.11] For any monomial order ≺ and any ideal

I ⊆ K[x], there exists a nonnegative integer weight vector ω ∈ Nn such that inω(I) =

in≺(I).
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There is strong motivation for computing Gröbner bases because of their numerous

applications. For example, given an ideal I, testing whether or not a polynomial belongs

to I is straightforward if one knows a Gröbner basis with respect to any term order.

Below, we discuss two other applications, computing elimination ideals and determining

the Hilbert series of an ideal.

In Proposition 1.2.7 we saw that to compute a join ideal we could compute the

intersection of an ideal with a ring generated by a subset of the variables. Given an

ideal I ⊆ K[x,y] the process of finding generators for I ∩K[y] is called elimination. The

resulting ideal is called an elimination ideal. The variety V (I ∩K[y]) is the closure of

the image of V (I) under the map that projects away the x coordinates.

Definition 1.3.12. A monomial order ≺ on K[x,y] is an elimination order for x1, . . . , xn

if for each polynomial g ∈ K[x,y], in≺(g) ∈ K[y] ⇒ g ∈ K[y].

Theorem 1.3.13 (Elimination Theorem). Let I ⊆ K[x,y] be an ideal and ≺ an elimina-

tion order for x1, . . . , xn. If G is a Gröbner basis for I then G ∩K[y] is a Gröbner basis

for I ∩K[y] and hence generates I ∩K[y].

As shown in Proposition 1.2.7, this gives us an algorithm for finding generating sets of

join ideals. Another application is the general implicitization problem. Given an algebraic

variety V ⊆ Kn and a morphism φ ∶ V → Km, this is the problem of finding generators for

I(φ(V )).

Definition 1.3.14. A morphism, φ ∶ Kn → Km is a map given by a polynomial rule

x↦ (φ1(x), . . . , φm(x))

with each φi(x) ∈ K[x].

Example 1.3.15. Consider the morphism φ ∶ C2 → C3 given by (s2, st, t2). Labeling the

coordinates of the image space by y1, y2, and y3, we define

J = ⟨y1 − s
2, y2 − st, y3 − t

2⟩ ⊂ C[y1, y2, y3, s, t].

Then I(Im(φ)) = J ∩R[y1, y2, y3]. The lexicographic term order with y1 < y2 < y3 < s < t

is an elimination order for s, t. Using the computer algebra package Macaulay2, we find

that

G = {y1y3 − y
2
2, t

2 − y3, sy3 − ty2, sy2 − ty1, st − y2, s
2 − y1}
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is a Gröbner basis for J with respect to this term order.

By Theorem 1.3.13,

I(Im(φ)) = ⟨y2
2 − y1y3⟩.

Theoretically, elimination should allow us to compute IT , the ideal of phylogenetic

invariants for a model, from the morphism ψT . Computing the requisite Gröbner basis

turns out to be difficult in practice even with the aid of computers.

Another application of Gröbner bases is the computation of the Hilbert series of an

ideal. Before we begin our discussion of Hilbert series, we present a few basic definitions

from projective algebraic geometry.

Definition 1.3.16. Projective n-space Pn(K) is the set of all lines in Kn+1 containing

the origin.

Each such line can be defined as span({(a0, . . . , an)}) for some (a0, . . . , an) ∈ Kn+1−{0}.

This representation is of course not unique since (a0, . . . , an) and λ(a0, . . . , an) define the

same line for any λ ∈ K∗. Thus, there is an equivalence relation on Kn+1 − {0} where two

points are equivalent if they define the same line. We can identify Pn(K) with the set of

equivalence classes in Kn+1 − {0} modulo this relation. We denote the equivalence class

of (a0, . . . , an) by [a0 ∶ . . . ∶ an] and simply use Pn for projective n-space when the field is

understood.

Definition 1.3.17. An ideal I ⊆ K[x] is homogeneous if it has a homogeneous system

of generators.

Definition 1.3.18. Let J ⊂ K[x0, . . . , xn] be a homogeneous ideal. The set

X(J) ∶= {[a0 ∶ . . . ∶ an] ∶ F (a0, . . . , an) = 0 for each homogeneous F ∈ J}

is the projective variety defined by J .

A projective variety is a set X ⊆ Pn that is equal to X(J) for some homogeneous ideal

J . While this definition is different than that given in [Has07], Proposition 9.14 of the

same reference ensures that these definitions are equivalent.

Example 1.3.19. Consider the ideal

J = ⟨x − y, x2 − yz⟩ ⊆ C[x, y, z].
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This is a homogeneous ideal with homogeneous generators of degree one and two. The

projective variety it defines is X(J) = {[0 ∶ 0 ∶ 1], [1 ∶ 1 ∶ 1]} ⊆ P2.

In order to define the Hilbert series, we need to introduce the notion of a graded

ring and a graded R-module. The definition of an R-module can be found for example

in [Eis04, p.15].

Definition 1.3.20. A graded ring is a ring together with a direct sum decomposition

R =
∞
⊕
i=0

Ri

as abelian groups such that RiRj ⊆ Ri+j for i, j ≥ 0.

Definition 1.3.21. If R = R0 ⊕R1 ⊕ . . . is a graded ring, then a graded module over R

is a module M with a decomposition

M =
∞
⊕
i=0

Mi

as abelian groups, such that RiMj ⊆Mi+j for all i and j.

The situation we are most interested in is when R is the ring of polynomials K[x]

graded by degree. If J ⊆ K[x] is a homogeneous ideal, then K[x]/J is a graded K[x]-

module where the grading is again by degree.

Definition 1.3.22. Let M be a finitely generated graded module over K[x] graded by

degree. Then the Hilbert series of M is

HS(M, t) ∶=
∞
∑
d=0

dimK(Md)t
d.

As noted in [Eis04, Section 1.9], the Hilbert series of K[x]/J encodes invariants of

the projective variety X(J) such as the dimension (which we define in Section 1.4.2) and

degree.

Our earlier claim was that determining the Hilbert series is an application of Gröbner

bases. To see how the two are related, let J be a homogeneous ideal and choose a monomial

order ≺. By calculating a Gröbner basis, we can determine generators for in≺(J). The

monomials which do not lie in J are called the standard monomials of J with respect to
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≺. If we let M = K[x]/J then the standard monomials of degree d form a basis for Md as

a K-vector space [Stu96, Proposition 1.11].

Example 1.3.23. Let J = ⟨x4+xy3−y4, x3−xy2+2y3⟩ ⊂ C[x, y] and let ≺ be the standard

lexicographic term order.

J is a homogeneous ideal with Gröbner basis

G = {y6, xy4 + 3y5, x2y2 − xy3 − y4, x3 − xy2 + 2y3}

and

in≺(J) = ⟨y6, xy4, x2y2, x3⟩.

We can visualize the monomials of in≺(J) via a staircase diagram in the plane. The

lattice vector (a, b) ∈ N2 corresponds to the monomial xayb. If a monomial appears in the

initial ideal, then so must every monomial to the right and above it, since these can be

obtained by repeatedly multiplying this monomial by x and y.

The aptness of the term “staircase diagram” is illustrated in Figure 1.2. The black

lattice points correspond to generators of in≺(J), grey to the other monomials in in≺(J),

and white to the standard monomials. The diagonal dotted lines connect monomials of

the same degree. The standard monomials are those that lie underneath the staircase.

The degree d standard monomials in the diagram form a basis for (C[x, y]/J)d as

a C-vector space. As an illustration, consider the degree four homogeneous polynomial

g = x4+x2y2 /∈ J . Adding or subtracting elements of J gives us an equivalent representative

of g in the ring C[x, y]/J . Therefore, we can write

g ∼ (x4 + x2y2) − x(x3 − xy2 + 2y3)

∼ 2x2y2 − 2xy3

∼ (2x2y2 − 2xy3) − 2(x2y2 − xy3 − y4)

∼ 2y4.

And 2y4 ∈ spanC({xy
3, y4}). To compute the Hilbert series, we observe,
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Figure 1.2: The staircase diagram for in≺(J) from Example 1.3.23.

(C[x, y]/J)0 = spanC({1}),

(C[x, y]/J)1 = spanC({x, y}),

(C[x, y]/J)2 = spanC({x
2, xy, y2})

(C[x, y]/J)3 = spanC({x
2y, xy2, y3}),

(C[x, y]/J)4 = spanC({xy
3, y4}),

(C[x, y]/J)5 = spanC({y
5}),

(C[x, y]/J)i = spanC({0}) for i ≥ 6.

Therefore, HS(C[x, y]/J, t) = 1 + 2t + 3t2 + 3t3 + 2t4 + t5.

As a corollary to [Stu96, Proposition 1.11], a homogeneous ideal and all of its initial

ideals have the same Hilbert series. This also implies that any two ideals that share a

common initial ideal must have the same Hilbert series. We will make extensive use of

these properties in Chapter 4 when we examine the initial ideals of some secant ideals
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arising in phylogenetics.

1.4 Algebraic Tools for Phylogenetics

By viewing phylogenetic models as algebraic objects we can leverage the methods of al-

gebra to explore their properties. For example, in the following chapters, we will see how

some questions about these models can be reduced to questions about the dimension

and primality of certain ideals. To address these questions we will tailor existing alge-

braic methods to our purposes. Three tools in particular that we will use repeatedly are

the Fourier-Hadamard transformation, the prime-dimension approach, and the tropical

secant dimension approach.

1.4.1 The Fourier-Hadamard Transformation

In this thesis, we will work primarily with group-based phylogenetic models. These are

models in which the probability of a particular state change along an edge is depen-

dent only on the difference between the group elements associated to the states at the

endpoints. Formally,

Definition 1.4.1. A phylogenetic model is group-based if there exists a group G, a map

L ∶ σ → G, and functions fe ∶ G → R associated to the edges of T , such that if v and w

are the vertices of e, then P (Xv = i∣Xw = j) = fe(L(i) −L(j)).

The JC, K2P, and K3P models discussed above are all group-based models where

G = Z2 ×Z2. The CFN model is also group-based for G = Z2.

Example 1.4.2. For the Jukes-Cantor model, the state space is σ = {A,C,G,T}. Let

G = Z2 ×Z2 and set L(A) = (0,0), L(C) = (1,0), L(G) = (0,1), and L(T ) = (1,1). Then

choosing β ∈ [0,1] and defining fe((1,0)) = fe((0,1)) = fe((1,1)) = β and fe((0,0)) =

1 − 3β realizes the JC model as a group-based model.

For group-based models the Fourier-Hadamard coordinate transformation is a linear

change of coordinates that makes each coordinate function of the parameterization a

monomial. We will present a practical outline demonstrating how to recover the mono-

mials; a thorough explanation of the transform can be found in [ES93], [SS05], and

[SESP93].
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Let pg1,...,gn be the probability of observing the state (g1, . . . , gn) at the leaves of T and

let qg1,...,gn be the image of this coordinate after the Fourier-Hadamard transformation.

The image of the parameter fe(g) after transformation is a
B∣B′
g where B∣B′ is the split

induced by removing e. Thus, the set of new parameters is {a
B∣B′
g ∶ g ∈ G,B∣B′ ∈ Σ(T )}.

The stochastic assumption under the Fourier transform forces a
B∣B′
g = 1 when g is the

identity element [SS05]. If every element of G is its own inverse, then after transformation,

qg1,...,gn =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∏
B∣B′∈Σ(T )

a
B∣B′

∑i∈B gi
if

n

∑
i=1

gi = 0

0 otherwise

The assumption that every element of the group is its own inverse means that if the

leaf elements sum to the identity, then for every partition B∣B′, ∑
i∈B
gi = ∑

i∈B′
gi. Therefore,

the monomial above does not depend on our labeling of the splits. All of the group-based

models discussed in this thesis will be based on Z2 or Z2 × Z2, both of which have this

property.

Example 1.4.3. Consider the Jukes-Cantor model on the 6-leaf tree with nontrivial

splits given by {15∣2346}, {135∣246}, and {1235∣46}. We have already noted that since

L(A) = (0,0), a
B∣B′
A = 1. In Example 1.4.2 we saw that fe((1,0)) = fe((0,1)) = fe((1,1))

which forces a
B∣B′
C = a

B∣B′
G = a

B∣B′
T ∈ (0,1]. Therefore, we will use only the label a

B∣B′
C

for each of these parameters. Then for each coordinate and for each split, either a
B∣B′
A

or a
B∣B′
C appears in the monomial parameterization of the coordinate. We encode the

resulting monomials in tree diagrams as follows. Redraw the tree T , but make each edge

solid if a
B∣B′
C appears and dotted if a

B∣B′
A appears. The solid edges of the diagram form a

subforest of T and the number of distinct nontrivial Fourier coordinates are in bijection

with the subforests of T [SF95].

The parameterization of a particular coordinate as well as the subforest induced by

this coordinate are shown. The superscript i means that the variable corresponds to the

trivial split i∣([n] ∖ {i})

qCAGGTG = a1
Ca

2
Aa

3
Ca

4
Ca

5
Ca

6
Ca

15∣2346
C a

135∣246
A a

1235∣46
A

In the transformed coordinates, the ideals IT for the group-based models are seen to

be toric ideals. That is, they are generated by differences of monomials. For the rest of
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this thesis we will work in the transformed coordinates in order to take advantage of the

rich combinatorial structure of toric ideals. For an excellent introduction to toric ideals

see [Stu96, Chapter 4].

1.4.2 The Prime-Dimension Approach

One technique that we will apply in both Chapters 3 and 4 is the prime-dimension ap-

proach. In each of those chapters, we will have a morphism and we will want to determine

a generating set for the vanishing ideal of the image of the morphism. As in Example

1.3.15, this can be done theoretically using elimination. However, in these instances, while

we are able to find some elements of the elimination ideal, the Gröbner basis computa-

tion required to verify that these polynomials generate the entire elimination ideal is too

intensive. Instead, we have a set of polynomials generating an ideal which we know to be

contained in the ideal we actually wish to compute. The prime-dimension approach will

allow us to prove that in fact, the two ideals are equal. The basic definitions of dimension

theory presented in this section are adapted from [Eis04, Chapter 9].

Definition 1.4.4. An ideal I ⊆ R is prime if ab ∈ I implies that either a ∈ I or b ∈ I.

Example 1.4.5. Let ψ ∶ Kn → Km be a morphism where ψ(a) = (f1(a), . . . , fm(a)).

Then define φ ∶ K[y1, . . . , ym] → K[x1, . . . , xn] to be the K-algebra homomorphism that

sends yi ↦ fi(x). We claim that ker(φ) is a prime ideal. Indeed, if ab ∈ ker(φ), then

φ(ab) = φ(a)φ(b) = 0. Since K[x1, . . . , xn] is an integral domain, this implies that either

φ(a) = 0 or φ(b) = 0, which implies that either a or b is in ker(φ). As a corollary, the

ideals IT are always prime.

Definition 1.4.6. The Krull dimension of a commutative ring R is the length of the

longest chain of prime ideals

p0 ⊂ . . . ⊂ pd

contained in R. The length of the chain above is d and we write dim(R) = d.

Definition 1.4.7. The dimension of an ideal I ⊆ R is the Krull dimension of R/I.

Example 1.4.8. Let I = ⟨x2 − y⟩ ⊆ C[x, y, z]. Then C[x, y, z]/I ≅ C[x, z]. The sequence

⟨0⟩ ⊆ ⟨x⟩ ⊆ ⟨x, z⟩
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is a sequence of prime ideals in C[x, z]. It can easily be seen that this chain is maximal,

and so dim(I) = 2.

If we let I be the ideal in Example 1.4.8, then V (I) = {(s, s2, t) ∈ C3 ∶ (s, t) ∈ C2}.

Our intuition based on the number of parameters and the geometry of this set suggests

that this variety also has dimension two. In fact, the dimension of the ideal I(V ) defines

the dimension of V .

Definition 1.4.9. The dimension of an affine variety V ⊂ Kn is equal to the dimension

of I(V ) ⊂ K[x]. The dimension of the projective variety X(J) ⊆ Pn is one less than the

dimension of J ⊆ K[x0, x1, . . . , xn].

Proposition 1.4.10. Suppose that I, J are ideals in a commutative ring R with J ⊆ I.

If J is prime and dim(I) = dim(J) then I = J .

Proof. We will use contradiction. Suppose I, J are as above with dim(I) = dim(J) = n

but that J ⊊ I. Therefore, there exists a maximal chain of prime ideals

p0 ⊂ p1 ⊂ . . . ⊂ pn ⊂ R/I

Given an ideal p in R/I, p̃ = {x ∈ R ∶ [x] ∈ R/I} is an ideal in R containing I. Moreover,

this construction gives a one-to-one correspondence between prime ideals in R/I and

prime ideals in R containing I.

Therefore, since we assumed J ⊊ I,

J ⊂ I ⊆ p̃0 ⊂ p̃1 ⊂ . . . ⊂ p̃n

is a chain of ideals in R and so

J ⊂ p̃0 ⊂ p̃1 ⊂ . . . ⊂ p̃n

is a chain of prime ideals in R of length n + 1. This implies the existence of a chain of

prime ideals in R/J of length n + 1, contradicting that dim(J) = n.

Proposition 1.4.10 is the basis of the prime-dimension approach. Given two ideals

J ⊆ I, the approach is to show that I = J by proving that J is prime and that dim(I) =

dim(J). In the problem described in the introductory paragraph to this section, I is the
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vanishing ideal of the image of the morphism and J ⊆ I is the ideal generated by the

polynomials known to be in the elimination ideal.

The questions still remain as to how to determine the dimension of an ideal and how

to show that an ideal is prime. Section 1.4.3 will address the former question. As for

primeness, we already know that the phylogenetic ideals IT are prime by the comments

in Example 1.4.5. However, in Chapters 3 and 4 we will need to determine if certain ideals

are prime only from a set of generators. There are algorithms for doing so implemented in

many computer algebra systems. Unfortunately, as is a recurring theme in our discussion

of computational algebraic geometry, these algorithms are too computationally intensive

for the ideals in this thesis.

Instead, we use the following result from [GSS05] which in certain cases allows one

to determine the primality of an ideal by determining the primality of an ideal in fewer

variables.

Lemma 1.4.11. [GSS05, Proposition 23] Let K be a field and J ⊆ K[x] be an ideal

containing a polynomial f = gx1 + h with g, h not involving x1 and g not a zero divisor

modulo J . Let J1 = J ∩K[x2, . . . , xn] be the elimination ideal. Then J is prime if and only

if J1 is prime.

Proposition 23 of [GSS05] is a known result that was stated without proof. We include

a proof here for completeness.

Proof. (⇒) It is true in general that the elimination ideal of a prime ideal is prime.

Suppose J is prime and let a, b ∈ K[x] ∖ J1 such that ab ∈ J1. Since J1 ⊂ J , it must be

that either a or b is in J ∖ J1, otherwise it would contradict that J is prime. Therefore,

either a or b is in K[x] ∖K[x2, . . . , xn] and so ab must have some term that involves x1,

which implies ab /∈ J1, a contradiction.

(⇐) Suppose J1 is prime but that J is not. Then there must exist a, b ∈ K[x] ∖ J with

ab ∈ J ∖ J1. Choose a and b so that ab has minimal x1-degree among all such pairs. Let

d be the x1-degree of a and d′ the x1-degree of b. Since ab ∈ J ∖ J1, d + d′ ≥ 1, and so

without loss of generality we can assume d ≥ 1. Write

a = h0 + h1x1 + h2x
2
1 + . . . + hdx

d
1,

where each hi ∈ K[x2, . . . , xn] and hd /= 0. Then since f ∈ J and g is not a zero divisor

modulo J , a′ ∶= (ga−hdxd−1
1 f) is not in J and has x1-degree strictly less than d. It follows
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that a′b has x1-degree strictly less than that of ab. Finally, since ab and f are in J ,

a′b = gab − hdxd−1
1 fb is in J , contradicting the minimality of the x1-degree of ab.

1.4.3 Tropical Secant Dimensions

In order to apply the prime-dimension approach we must be able to determine the di-

mension of an ideal. Again, given a set of generators, this can be done using computer

algebra systems. However, in this thesis, we will also need to determine the dimension of

an ideal for which generators of the ideal are not yet known. For example, in the previous

section we described how we will want to use the prime-dimension approach to determine

generators for an ideal I, the vanishing ideal of the image of a morphism. This requires

that we know the dimension of I, but of course, we will not be able to use a generating

set to determine this. Instead, we will need a way to determine dim(I) only from the

morphism. In such a case, the tropical secant dimension approach of [Dra08] allows us

to establish lower bounds on dim(I).

When taking the join of r varieties contained in Kn, we introduce (r− 1) parameters,

giving us the following bound

dim(V1 ∗ . . . ∗ Vr) ≤ min{
k

∑
i=1

dim(Vi) + (r − 1), n} ,

This upper bound is called the expected dimension and any join variety realizing this

bound is called nondefective. The expected dimension also gives us an upper bound on

the dimension of the ideal I(V ) where V is a join variety. Another way to establish an

upper bound for I(V ) is to find an ideal J of known dimension with J ⊆ I(V ), which

implies dim(I(V )) ≤ dim(J). If we can construct equal upper and lower bounds using

these methods and the tropical secant dimension approach, we will be able to determine

dim(I(V )) exactly.

The remaining definitions and terminology in this section are adapted from the more

general presentation in [Dra08]. We refer the reader there and to [MS15] for a background

on tropical geometry. The tropical secant dimension approach actually applies to joins

of affine cones. That is, affine varieties closed under scalar multiplication. Since we may

regard a projective variety as an affine cone we will be able to apply this theorem to

projective varieties in Chapters 2, 3 and 4.

Let C1, . . . ,Cr be affine cones. Suppose further that Ci = Im(fi) where fi ∶ Cmi → C∣B∣
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is a morphism. For 1 ≤ i ≤ r, we write fi as a list (fi,b)b∈B. For our purposes, we may

assume that each fi,b is a monomial, so that fi,b = xαi,b . For affine cones the mixing

parameters introduced when constructing the join variety are superfluous. Thus, we can

write the join of the affine cones C1, . . . ,Cr as

C1 + . . . +Cr ∶= {c1 + . . . + cr ∶ ci ∈ Ci,1 ≤ i ≤ r}.

Definition 1.4.12. For v = (v1, . . . , vr) ∈
r

⊕
i=1

Rmi , let

Di(v) ∶= {αi,b ∶ ⟨vi, αi,b⟩ > ⟨vj, αj,b⟩ for all j /= i}.

If αi,b ∈Di(v) then we say that i wins b at v and call Di(v) the set of winning directions

of i at v.

Finally, we have all the requisite definitions to state the primary result we will need.

Lemma 1.4.13. [Dra08] The affine dimension of C1 + . . .+Cr is at least the maximum,

taken over all v = (v1, . . . , vr) ∈
r

⊕
i=1

Rmi, of the sum

r

∑
i=1

dimR⟨Di(v)⟩R.

In the following example, we show how to apply this lemma in the simple case of the

second secant variety of the Veronese surface. In Example 2.3.1, we relate the notation and

terminology above to join varieties associated to 3-class Jukes-Cantor mixture models.

Example 1.4.14. The Veronese surface is the projective variety V defined by the map-

ping v ∶ P2 → P5 where

[a ∶ b ∶ c] ↦ [a2 ∶ b2 ∶ c2 ∶ bc ∶ ac ∶ ab]

To apply Lemma 1.4.13, let us consider this variety as an affine cone and write the secant

as C1 +C2.

Now, C1 = Im(f1) where f1 ∶ C3 → C6 is the morphism

f1(a, b, c) = (a2, b2, c2, bc, ac, ab),

25



and C2 = Im(f2) where f2 ∶ C3 → C6 is the morphism

f2(d, e, f) = (d2, e2, f 2, ef, df, de).

In this example we will simply index the coordinates by B = [6]. Then the exponent

vectors are

α1,1 = (2,0,0) α2,1 = (2,0,0)

α1,2 = (0,2,0) α2,2 = (0,2,0)

α1,3 = (0,0,2) α2,3 = (0,0,2)

α1,4 = (0,1,1) α2,4 = (0,1,1)

α1,5 = (1,0,1) α2,5 = (1,0,1)

α1,6 = (1,1,0) α2,6 = (1,1,0).

To obtain a lower bound on dim(C1 + C2), we choose (v1, v2) ∈ R3 ⊕ R3. For this

example we will choose v1 = (1,3,5) and v2 = (2,6,3). The vector v = (v1, v2) determines

the winning directions at b. For example, 2 wins 1 at v because

v2 ⋅ α2,1 = 4 > 2 = v1 ⋅ α1,1.

Continuing, we determine that 1 wins 3 and 5 at v and 2 wins 1,2,4, and 6 at v. Thus,

D1(v) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎝

0

0

2

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

1

0

1

⎞
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

and D2(v) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎝

2

0

0

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

0

2

0

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

0

1

1

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

1

1

0

⎞
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

.

Lemma 1.4.13 tells us that dim(C1 + C2) ≥ dimR⟨D1(v)⟩ + dimR⟨D2(v)⟩ = 2 + 3 = 5.

Since the expected dimension is 6, this tells us only that the dimension is either 5 or 6.

We can compute the actual dimension in Macaulay2 to get dim(C1 +C2) = 5. Thus, as a

projective variety, dim(V ∗ V ) = 4.

Our choice of v happened to give us a lower bound equal to the actual dimension, but

of course this need not be the case. Choosing v = (1,1,1,2,2,2) for example would have

only told us that dim(C1 + C2) ≥ 3. Obtaining a tight bound is not simply a matter of

choosing the right vector, as [Dra08] contains several examples where no choice of vector

gives a tight lower bound.
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1.5 Outline

In this thesis, we will use the tools described above to examine the properties and struc-

ture of different phylogenetic models. We begin in Chapter 2 by examining the identifi-

ability of the 3-class Jukes-Cantor mixture model. The importance of identifiability for

phylogenetic inference was discussed previously where we noted that the identifiability of

the tree parameters is of particular importance. The analogous question for a phylogenetic

mixture model is whether or not the multiset of tree parameters is identifiable.

The identifiability of both the tree parameter and the numerical parameters has al-

ready been established for the basic models of character evolution [Cha96] as well as for

some of the more complex phylogenetic models [AAR08, AR08a, AR06]. A number of

papers have examined the identifiability of mixture models with various restrictions on

the topologies of the trees in the mixture [ARS12, MMS08, MS07, RS12]. Recent work

has established the identifiability of the tree parameters for 2-class mixtures of both the

Jukes-Cantor and Kimura 2-parameter models with no restrictions on the tree topolo-

gies [APRS11]. Our goal in this chapter is to extend the ideas from [APRS11] to larger

class mixture models, in particular, to the 3-class Jukes-Cantor mixture model. We do

not address the identifiability of the numerical parameters, but focus instead on the tree

parameters of the model. Our main result is the following:

Theorem 2.0.1. The tree parameters of the 3-class Jukes-Cantor mixture model are

generically identifiable for trees with ≥ 6 leaves.

The proof of this main result uses tools from algebraic geometry and combinatorics

as well as some heavy symbolic computation. First, we use a combinatorial argument to

show that to establish identifiability for models on n-leaf trees it is enough to establish

identifiability for models on trees with six or fewer leaves. We then establish this result

by comparing the ideals of phylogenetic invariants for all 3-class Jukes-Cantor mixture

models on trees with fewer than six leaves. Along the way, we will use various arguments

to simplify and reduce the total number of computations we need to perform.

The strand symmetric model (SSM) is a phylogenetic model designed to reflect the

symmetry inherent in the double-stranded structure of DNA. In Chapter 3, we will de-

termine the ideal of phylogenetic invariants for the SSM on the claw tree K1,3. Results

in [DK09] imply that generators of the ideal of phylogenetic invariants for the SSM on

any binary tree can be determined from knowledge of the ideal on K1,3. Thus, this is an
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important first step in understanding the theoretical properties of the model for even-

tual application. In [CS05], the authors were able to determine equations in the ideal

of phylogenetic invariants for the SSM on K1,3. However, whether or not these equa-

tions generate the entire ideal was heretofore unknown. In this chapter, we will apply

the prime-dimension approach of Section 1.4.2 to show that in fact these 50 equations

generate the ideal of the SSM on K1,3.

Finally, in Chapter 4, we study secant ideals associated to the CFN model. It is known

that for any two n-leaf binary phylogenetic X-trees, the associated ideals of phylogenetic

invariants for the CFN model have the same Hilbert series [BW07]. Moreover, there exists

a single ideal, In, of which the ideal associated to the CFN model of any n-leaf binary

phylogenetic X-tree can be realized as an initial ideal [SX10]. In light of these results,

we conjecture the following.

Conjecture 4.1.1. Let T be an n-leaf binary phylogenetic X-tree and let ω be a weight

vector such that inω(In) = IT . Then inω(In ∗ In) = IT ∗ IT .

To investigate this conjecture, we first gather what evidence we can by determining

the CFN secant ideals for both 6-leaf tree topologies. We then explore a related conjecture

for a class of ideals associated to binary trees that can be constructed as initial ideals

of I2,n, the Plücker ideal. This last chapter will also reveal some connections between

phylogenetic models and the Pfaffian ideals, a well-studied class of ideals in algebraic

geometry.
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Chapter 2

Identifiability of 3-Class

Jukes-Cantor Mixtures

The goal of phylogenetic inference is to find a tree that captures the evolutionary re-

lationships between species. However, as referenced in Section 1.1, various biological

phenomena confound this effort. Individual genes may actually conform to different phy-

logenetic trees, telling conflicting stories about the species in which they reside. The

result is that a model-based approach on a single tree may be doomed to fail. Suppose

for example that one has aligned DNA sequences and that a certain portion of the se-

quences evolved according to a model on one tree and a different portion independently

according to a model on another. Then the observed distribution on the n-tuples of DNA

bases is unlikely to belong to either model. Instead, the observed distribution would be

a weighted sum of two distributions, one from each model, where the weighting is ac-

cording to the proportion of DNA that evolved according to each. Geometrically, the

observed distribution would lie on a line between two probability distributions, one from

each model.

Mixture models are designed to model the situation above by weighting distributions

from multiple models to produce a single probability distribution. Of course, there is

no reason that this process should be limited to two models and we call a mixture of r

different models an r-class mixture. Since different portions of DNA may evolve according

to the same tree but at different rates, there is also good reason to consider mixtures

of models with the same tree parameter. Thus, instead of a single tree parameter, an

r-class mixture model has a multiset of r tree parameters. Just as with a phylogenetic
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model on a single tree, if the mixture model is to be informative, the multiset of tree

parameters must be identifiable. This is perhaps even more of a concern with mixture

models as we introduce new parameters and enlarge the set of distributions. Such issues

of overparameterization were observed in [MS07] where it was shown that for the CFN

model, a mixture of two models on the same tree could mimic a model on a single, entirely

different tree.

In this chapter, we prove the following result.

Theorem 2.0.1. The tree parameters of the 3-class Jukes-Cantor mixture model are

generically identifiable for trees with ≥ 6 leaves.

The proof of this main result will occupy the whole of the present chapter. In Section

2.1, we will demonstrate why algebraic geometry is the appropriate tool for studying

these models by associating to each set of tree parameters an irreducible algebraic variety

containing the possible distributions arising from the 3-class Jukes-Cantor mixture model

on those trees. We will then show how the question of identifiability can be reduced to

showing that for any two sets of tree parameters, the associated varieties are not contained

in one another. To show the varieties are not contained in one another, it is enough to

show that their vanishing ideals are not contained in one another. Isolating phylogenetic

invariants for the mixture models will be a key part of this proof.

In Section 2.2 we will investigate the combinatorial properties of binary phylogenetic

X-trees to show that it is not actually necessary to compare arbitrary sets of tree parame-

ters. Instead, we will be able to obtain identifiability results for n-leaf trees by comparing

mixtures on trees with six or fewer leaves. Thus, we will have a finite list of pairs of

mixtures for which we must show the mutual noncontainment of their varieties.

Finally, in Section 2.4, we will combine the results from the previous sections to

construct a finite list of specific pairs of mixtures that we must consider. We will then

outline a method for finding phylogenetic invariants that distinguish these mixtures from

one another and provide access to computations proving that they exist. Many, but

not all pairs of triplets of trees are separated by linear invariants. For the triplets not

separated by linear invariants, we will use the linear invariants in a novel way to construct

separating invariants of higher degree.
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2.1 Preliminaries

The tree parameter of a phylogenetic model is a binary phylogenetic X-tree with X = [n].

In this chapter, we will specifically consider the Jukes-Cantor model. There is a transition

matrix associated to each edge of T with structure depicted in Figure 1.1c. Recall that

the entries of the transition matrices are called the numerical parameters and that we

have a polynomial map from the set of numerical parameters ΘT into the probability

simplex ∆4n−1,

ψT ∶ ΘT →∆4n−1 ⊆ R4n .

The image of this map is a set of distributions that we call the model, and we write

MT = Im(ψT ).

Because the entries of each row of the transition matrices must sum to one, we es-

sentially have one parameter along each edge in the Jukes-Cantor model, though we will

often ignore this in order to homogenize the parameterization. Likewise, every numerical

parameter must be a real number between zero and one. If we similarly ignore this re-

striction and simply regard ψT as a complex polynomial map, Im(ψT ) = VT is a complex

algebraic variety.

An r-class mixture model enlarges the space of possible distributions by taking r

models and introducing r − 1 mixing parameters. The mixing parameters weight the

distribution from each of the models according to the proportion of data arising from

each. Note that the underlying tree parameters of the models need not be distinct. This

allows us to account for different portions of DNA being explained by the same tree but

with different choices of numerical parameters. Just as before, with fixed tree parameters,

we have a map that takes a choice of numerical parameters for each model and a choice

of mixing parameters and maps them to a probability distribution. Our primary object

of interest will be the map for the 3-class Jukes-Cantor mixture, so we have

ψT1,T2,T3 ∶ ΘT1 ×ΘT2 ×ΘT3 ×∆2 →∆4n−1

where

(s1, s2, s3, π) ↦ π1ψT1(s1) + π2ψT2(s2) + π3ψT3(s3).

Here, π = (π1, π2, π3) ∈ ∆2 is the vector of mixing parameters. Again, regarded as a

complex polynomial map, Im(ψT1,T2,T3) is an algebraic variety.
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In fact,

Im(ψT1,T2,T3) = VT1 ∗ VT2 ∗ VT3 ,

where VT1 ∗ VT2 ∗ VT3 is the join variety of VT1 , VT2 , and VT3 .

Before we formally define the concept of generic identifiability for r-class mixtures,

we will introduce some convenient notation. Let TX be the set of binary phylogenetic

X-trees and let TX,r be the set of r element multisets of elements of TX . Note that as in

our mixture models, for T = {T1, . . . ,Tr}, the trees in T are not necessarily distinct. We

will now write ψT ∶= ψT1,...,Tr .

Definition 2.1.1. [APRS11] The tree parameters of an r-tree mixture model are gener-

ically identifiable for n-leaf trees if for all S,T ∈ T[n],r generic (s1, . . . , sr, π) ∈ ΘS1 × ⋯ ×

ΘSr ×∆r−1, and any (t1, . . . , tr, π′) ∈ ΘT1 ×⋯ ×ΘTr ×∆r−1, the equality

ψS(s1, . . . , sr, π) = ψT (t1, . . . , tr, π
′)

implies S = T .

In this chapter we will not need such generality, as we will specifically consider the

3-class Jukes-Cantor mixture model. In order to prove Theorem 2.0.1, we will translate

this statement about identifiability into one about algebraic varieties.

Lemma 2.1.2. [APRS11] Suppose S,T ∈ T[n],3. Then for the 3-class Jukes-Cantor mix-

ture model, VT /⊆ VS and VS /⊆ VT implies that the set of numerical parameters mapping

into VS ∩ VT is a set of Lebesgue measure 0.

Notice that this algebraic characterization means that we are able to obtain results

about the models MS and MT by working with the complex varieties VS and VT . One

strategy for proving generic identifiability of the 3-class Jukes-Cantor mixture model

for n-leaf trees is then clear. We can simply list all elements of T[n],3 (which we will

call n-leaf triplets) and generate the corresponding varieties. By Lemma 2.1.2, if we

can show that any two of these varieties are mutually noncontained, then we will have

established identifiability for n-leaf trees. As alluded to earlier, we will actually want

to look at the ideals of phylogenetic invariants. We will often refer to the elements of

IT = I(VT1 ∗ VT2 ∗ VT3) as phylogenetic invariants of VT = VT1 ∗ VT2 ∗ VT3 , (or occasionally

just phylogenetic invariants of T = {T1,T2,T3}, or of the mixture model). At the level of

ideals, our strategy translates into showing that for each (S,T ) ∈ T[n],r×T[n],r with S /= T ,
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IS /= IT . But to do this, we need not compute generators for the the ideals involved, but

instead we only need to find an invariant of IT that is not an invariant of IS , and vice

versa. Once we have done this for a specific pair, we will say that we have separated S

and T .

This gives us a clear procedure for determining identifiability, but with some obvious

drawbacks. First, the number of binary phylogenetic X-trees with n leaves is (2n− 5)!! =

1 ⋅ 3 ⋅ 5⋯(2n − 5), which makes generating all possible 3-class mixtures computationally

prohibitive even for relatively small n. Secondly, on the face of it, this brute force approach

does not seem to offer any way of establishing generic identifiability of the tree parameters

for arbitrary n. However, as we will see in the next section, it is possible to establish

generic identifiability of the 3-class Jukes-Cantor mixture model for all n by separating

only a finite number of mixtures.

2.2 Disentangling Trees

In this section we explain how to use trees with few leaves to establish identifiability for

trees with an arbitrary number of leaves. The size of the trees we need to consider is

bounded by the disentangling number for phylogenetic mixtures. For T ∈ TX and K ⊂X,

let T∣K be the tree obtained by suppressing all degree two vertices in the subtree of T

induced by the leaves labeled by K. For T = {T1, . . . ,Tr} ∈ TX,r, T∣K = {T1∣K , . . . ,Tr∣K}.

Example 2.2.1. Consider T ∈ T[8] pictured below and K = {2,3,5,7,8}.

Definition 2.2.2. Let S,T ∈ TX,r with S /= T . A subset K ⊆ X is said to disentangle S

and T if S∣K /= T∣K . Let d(S,T ) be the cardinality of the minimum disentangling set of S
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and T . The disentangling number D(r) is

D(r) = max
n∈N

max
S/=T ∈T[n],r

d(S,T )

The following lemma [APRS11] motivates our interest in the disentangling number.

Lemma 2.2.3. Let S,T ∈ T[n],3 and K ⊆ [n]. If VS∣K /⊆ VT∣K then VS /⊆ VT .

Now suppose we are able to show identifiability for trees with D(3) leaves. Then given

any (S,T ) ∈ T[n],3 × T[n],3 with S /= T and n > D(3), we can find some K ⊂ [n] with

∣K ∣ =D(3) such that S∣K /= T∣K , VS∣K /⊆ VT∣K , and VT∣K /⊆ VS∣K . By Lemma 2.2.3, in doing so

we will have separated S and T . Consequently, we would have generic identifiability of the

tree parameters of the 3-class Jukes-Cantor mixture model for trees with n ≥D(3) leaves.

Thus, as promised, we will have an upper bound on the number of possible varieties we

need to consider. In this section we provide some general background on the disentangling

number and prove that D(3) = 6.

The rooted disentangling number, RD(r), is defined analogously for rooted trees. We

will omit the short proof of this lemma from [Sul12] that relates RD(r) and D(r).

Lemma 2.2.4. The disentangling and rooted disentangling numbers satisfy: D(r) ≤

RD(r) + 1.

The main result of [Sul12] is the following theorem from which we obtain an upper

bound on D(r) as an immediate corollary.

Theorem 2.2.5. RD(r) = 3(⌊log2(r)⌋ + 1) .

Corollary 2.2.6. For r ∈ N,D(r) ≤ 3(⌊log2(r)⌋ + 1) + 1.

The original proof Theorem 2.2.5 is obtained by encoding multisets of trees as high-

dimensional contingency tables and applying results about marginal maps. We provide

an alternative, and hopefully more direct proof by examining the tree topologies directly.

Proof of Theorem 2.2.5. Let RX,r be the set of r-element multisets of rooted binary phy-

logenetic X-trees. A construction in [Hum08] shows that 3(⌊log2(r)⌋ + 1) ≤ RD(r), so

we need only show that for every pair S,T ∈ RX,r with S /= T , there is a disentangling

set of cardinality less than or equal to 3(⌊log2(r)⌋ + 1). We will proceed by induction

on r. Because a rooted tree is determined by its rooted triples ([SS03, Theorem 6.4.1]),
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the base case RD(1) = 3 is established. Assume this is true for all integers less than

r and let S,T ∈ RX,r with S /= T . There must exists some i and j such that Si /= Tj.

By our inductive assumption, we can permute the leaf labels so that for K = {1,2,3},

Si∣K /= Tj∣K . There are only three topologically distinct 3-leaf rooted binary phylogenetic

X-trees, which we will label t1, t2, and t3.

If S∣K /= T∣K , then S and T are disentangled and we are done. Otherwise, S∣K = T∣K is

an unordered list of the trees t1, t2, and t3 occurring with multiplicity. Partition S into

three multisets,

LlS ∶= {Sj ∈ S ∶ Sj∣K = tl}

for 1 ≤ l ≤ 3, and likewise for T . Since K was chosen to disentangle an element of S

from an element of T , it must be the case that S∣K and T∣K contain at least two distinct

3-leaf trees. Therefore, we can choose l so that LlS is nonempty and ∣LlS ∣ = r
′ ≤ r

2 . Since

S∣K = T∣K , ∣LlS ∣ = ∣LlT ∣ and we can consider LlT and LlS as elements of RX,r′ . By our

inductive assumption, there exists a disentangling set K ′ of LlT and LlS such that

∣K ′∣ ≤ 3(⌊log2(r
′)⌋ + 1)

≤ 3(⌊log2 (
r

2
)⌋ + 1)

= 3((⌊log2(r)⌋ − 1) + 1)

= 3(⌊log2(r)⌋).

Therefore, ∣K ∪K ′∣ ≤ 3(⌊log2(r)⌋+1). We claim that this set disentangles S and T . Since

K ′ disentangles LlS from LlT , and K ′ ⊆K∪K ′, (LlS)∣K∪K′ /= (LlT )∣K∪K′ . If S and T are still

entangled, then there must be some tree in (LlS)∣K∪K′ equal to some tree in (LmT )∣K∪K′

with l /=m. But since K ⊆K ∪K ′, this is impossible, so K ∪K ′ disentangles S and T .

While this assures us that D(3) ≤ 7, we can actually reduce this bound slightly, vastly

reducing the number of triplet pairs we need to consider. For the theorem and proof that

follow, we will make use of the following definition.

Definition 2.2.7. For T ∈ T[n] and K a three element subset of [n], if K ∣([n] ∖K) is a

split of T then the 3-leaf rooted tree induced by K is a cluster on K.

Definition 2.2.8. Let S,T ∈ TX,r and K a subset of X that does not disentangle S and

T . Label the trees of S and T so that S = {S1, . . . ,Sr} and T = {T1, . . . ,Tr}. For 1 ≤m ≤ r,
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Figure 2.1: Possible locations for e1 from the proof of Theorem 2.2.9.

let

mi = min({m ∈ [r] ∖ {m1, . . . ,mi−1} ∶ Sm∣K = Ti∣K})

Then with respect to the chosen labeling, we say that Smi
and Ti are partners at K.

Notice that each tree of T has exactly one partner at K, and that the partnered trees

at K are exactly the same if we swap the roles of S and T in the definition.

Theorem 2.2.9. D(3) ≤ 6.

Proof. We will use contradiction. Suppose D(r) = 7 and let Ki = [7] ∖ {i}. Then there

must exist S,T ∈ T[7],3 such that S∣Ki
= T∣Ki

for 1 ≤ i ≤ 7. For everything that follows, fix

some labeling of the trees of S and T so that for each i, every tree of S and T has a

partner at Ki.

We will collect a few key observations about trees that are partnered together at

multiple Ki. If a tree of S and a tree of T are partnered together at Ki for exactly j

distinct values of i, then we will call them j-partners. Suppose Sl /= Tm are 2-partners

and permute the leaf labels so that they are partnered at K1 and at K2. Let vi be the

leaf vertex labeled i, and let ei be the edge adjacent to this vertex. Since Sl∣K1
= Tm∣K1

,

there must be a unique edge on this tree where e1 is attached to form Sl, and a different

unique edge where e1 is attached to form Tm. But in order for our trees to still be equal

when restricted to K2, the two distinct edges where we attached e1 must collapse to the

same edge when we remove e2. Therefore, Sl and Tm must have the structure of the tree

in Figure 2.1 where r1 and r2 are rooted trees and where e1 is one of the dashed edges.
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Figure 2.2: Possible structures for 3-partners at {K1,K2,K3}.

Now suppose that Sl and Tm are 3-partners, partnered at K1,K2 and K3. From above,

observe that regardless of which edge is e1, that the length of the path from v1 to v2 in

both trees must be less than or equal to three. Therefore, the length of the path between

each pair of vertices, (v1, v3), (v1, v2), and (v2, v3), must be less than three in both Sl

and Tm. Consequently, Sl and Tm must both have a cluster on {1,2,3}, and they must

be the same tree apart from these clusters (i.e., Sl and Tm must be two different trees

from the list in Figure 2.2, where r is some rooted tree). From the figure we also see if

Sl∣Ki
= Tm∣Ki

for i /∈ {1,2,3}, then Sl = Tm. This implies that for j > 3 any two trees that

are j-partners must be the same tree.

If any tree of S is equal to any tree of T , then we can remove these trees to form the

multisets S ′,T ′ ∈ T[7],2, and any set K that disentangles S ′ and T ′ will disentangle S and

T . Since D(2) = 6 ([MMS08]) this would imply (S,T ) ≤ 6 contradicting our assumption

that d(S,T ) = 7. Therefore, we can assume that no two trees are j-partners for j > 3.

Since each tree of S and each tree of T must be partnered at all seven Ki, the only

possibility for a single tree is that it has one 3-partner and two 2-partners or two 3-

partners and one 1-partner. The particular partnering relationships impose restrictions

on the possible structures of the trees in S and T . We will now consider both cases and

use these restrictions to arrive at a contradiction.

Case 1: There exists a tree in S or T with one 3-partner and two 2-partners.

We will leave all partners fixed according to the original labeling. However, for con-

venience, we will relabel the multisets, trees, and leaves so that T1 is the tree from the

assumption that is partnered with S1 at {K1,K2,K3}, with S2 at {K4,K5}, and with S3

at {K6,K7}.
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Figure 2.3: Structure of trees satisfying Case 1 of Theorem 2.2.9.

So far then, we know T1 and S1 are as in Figure 2.3, where t1 and t2 are distinct

clusters on {1,2,3} and r1 is a rooted tree with leaf label set {4,5,6,7}. We also know

that T1∣K4
= S2∣K4

, so S2∣K4
contains the cluster t1. If e4 is connected to an edge of S2

somewhere in the cluster t1 of S2∣K4
, then it is impossible for S2∣K5

= T1. Therefore, we

see that even without restricting to K4, S2 and similarly S3 must contain the cluster t1.

Thus, T1,S1,S2, and S3 are all as depicted in Figure 2.3.

Every tree must have a 3-partner, so let T2 be a 3-partner of S2. From our observations

above, S2 and T2 differ only by a cluster on some three element set K ′. We know that

K ′ cannot contain 4 or 5 since S2 is partnered with T1 at K4 and K5. Therefore, K ′

contains at least one element of {1,2,3}. But to preserve the cluster t1, it must be that

K ′ = {1,2,3}. If T2∣K′ = t3, then K ′ disentangles S and T , and if T2∣K′ = t1 then T2 = S2,

it follows that T2∣K′ = t2.

Finally, S1 and T1 as well as S2 and T2 are partnered at K1,K2, and K3, which forces

S3 and T3 to be partnered at K1,K2, and K3. As a result, S3 and T3 differ only by a

cluster on {1,2,3} (Figure 2.3). If T3∣K′ = t1 then T3 = S3 and if T3 = t2 or T3 = t3 then K ′

is a disentangling set. In any case we have a contradiction.

Case 2: Every tree in S and T has two 3-partners and one 1-partner.

As before, leave the partnering relationships fixed and relabel the multisets, trees, and
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Figure 2.4: Structure of trees satisfying Case 2 of Theorem 2.2.9.

leaves so that T1 is partnered with S1 at {K1,K2,K3}, with S2 at {K4,K5,K6}, and with

S3 at {K7}. As we’ve seen, T1 must have a cluster on {1,2,3} and a cluster on {4,5,6},

so T1 is as pictured in Figure 2.4. As 3-partners of T1, both S1 and S2 must have clusters

on {1,2,3} and {4,5,6} as well and are also as depicted in Figure 2.4.

S1 must have another 3-partner which we will label T2. S1 and T2 must differ only at

a cluster on some three element set K ′ ⊂ [7] ∖ {1,2,3} which must contain elements of

{4,5,6}. Then as we argued above, to preserve the {4,5,6} cluster on S1 it must be that

K ′ = {4,5,6}. S2 must also have a second 3-partner. This tree can not be T2, since then

both T1 and T2 would have two 3-partners, leaving T3 as the sole 3-partner for S3 and

putting us back in Case 1. Therefore, S2 and T3 must be 3-partners, and the same logic

shows that they differ only at a cluster on {1,2,3}. The possible structures of T1,T2,T3,S1,

and S2 are all displayed in Figure 2.4 (ti/j indicates that a cluster can be only either ti or

tj and likewise for si/j). Since the 3-partners of S1 are T1 and T2, the 1-partner of S1 must

be T3, and S1 and T3 must be partnered at K7. From the diagram, it is clear S1∣K7
/= T3∣K7

,

which is a contradiction.
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2.3 Dimension

As a corollary to Lemma 2.1.2, we have a strategy for proving the identifiability of

the 3-class Jukes-Cantor mixture model for n-leaf trees. We simply look at all pairs

(S,T ) ∈ T[n],3 × T[n],3 with S /= T and show that IS /⊆ IT and that IT /⊆ IS . Our goal

in this section is to prove that for every (S,T ) ∈ T[n],3 × T[n],3, dim(IS) = dim(IT ).

We have already seen in Example 1.4.5 that both ideals are prime. If they are also

of the same dimension, then Proposition 1.4.10 tells us that they are either mutually

not contained or equal. Thus, proving this dimension result will allow us to establish

mutual noncontainment by simply showing that IS /= IT . Since eventually our proof will

necessitate separating many triplet pairs, this will greatly reduce the number of invariants

we have to find. Moreover, it will make the task of separating pairs much easier in cases

where finding an invariant to establish noncontainment in one direction is more difficult

than doing so in the other.

To deduce the dimension of these ideals we will use the parameterization of the under-

lying varieties and apply the tropical secant dimension technique that we introduced in

Section 1.4.3. In particular, we will see that it is enough to show that each of these ideals

is nondefective. For all of the work that follows, we will work in the Fourier coordinates

that we introduced in Section 1.4.1. Importantly for our purposes, the linearity of the

transform means that it commutes with taking mixtures. To see how we will use non-

defectiveness, let T = {T1,T2,T3} be a 6-leaf triplet. We know that each tree in T has 9

edges, and so from the Fourier parameterization of the Jukes-Cantor model, it is obvious

that dim(VTi) ≤ 9. This comes from a simple count of the parameters, remembering that

each of the aeA is actually equal to one in the Fourier coordinates. Therefore, if we can

show that dim(VT1 ∗VT2 ∗VT3) = 29, we will have shown that this variety is nondefective.

Now suppose we could show that the join variety of every 6-leaf triplet is nondefective,

then as a corollary, the join varieties of any two 6-leaf triplets are the same dimension,

and so too are the ideals.

Our approach is inspired by the proof of the nondefectiveness of the second secant

variety associated to a 4-leaf tree as shown in ([APRS11]). Let T ∈ T[n],r, we will tem-

porarily regard the aeA as variables which homogenizes the parameterization of VTi for

1 ≤ i ≤ r. Now we have projective varieties which we will regard as affine cones, C1, . . . ,Cr.

We can apply Lemma 1.4.13 because each of these cones is the image of a polynomial

map, fi ∶ Cmi → C∣B∣. We illustrate how the components of the lemma correspond to the
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3-class Jukes-Cantor mixture model in the example below.

Example 2.3.1. Consider the 3-class Jukes-Cantor mixture model for the trees pictured.

In this example, r = 3. After the Fourier transformation there are two parameters

associated to each of the nine edges of the tree (aeA and aeC). The dimension of the

parameter space for each cone is the same and so m1 =m2 =m3 = 18. The coordinates of

the image space are indexed by 6-tuples of the DNA bases, thus B = {A,C,G,T}6 and

for 1 ≤ r ≤ 3, fi is a map from C18 into C46 .

As outlined in Section 1.4.1, after the Fourier transformation each coordinate in the

image space is parameterized by a monomial where every exponent is either 0 or 1. To

illustrate one particular coordinate,

f1,CACCGT = a1
Ca

2
Aa

3
Ca

4
Ca

5
Ca

6
Ca

15∣2346
C a

46∣1235
C a

135∣246
C

f2,CACCGT = b1
Cb

2
Ab

3
Cb

4
Cb

5
Cb

6
Cb

12∣3456
C b

15∣2346
C b

126∣345
C

f3,CACCGT = c1
Cc

2
Ac

3
Cc

4
Cc

5
Cc

6
Cc

12∣3456
C c

34∣1256
A c

125∣346
C .

Defining a different parameter vector for each of the trees in the mixture, we can

write each fi,b = xαi,b for some αi,b ∈ {0,1}18. Using a colon to separate the aeC and aeA
coordinates, the exponent vectors are
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α1,CACCGT = (1,0,1,1,1,1,1,1,1 ∶ 0,1,0,0,0,0,0,0,0)

α2,CACCGT = (1,0,1,1,1,1,1,1,1 ∶ 0,1,0,0,0,0,0,0,0)

α3,CACCGT = (1,0,1,1,1,1,1,0,1 ∶ 0,1,0,0,0,0,0,1,0).

To apply Lemma 1.4.13, we choose a vector v = (v1, v2, v3) ∈ R18⊕R18⊕R18, which will

partition the exponent vectors above into the “winning directions” of Definition 1.4.12.

Lemma 1.4.13 gives us a way to compute lower bounds on the dimensions of join

varieties. Now to show that a join variety is nondefective, we just need to generate a

lower bound that is equal to the expected dimension.

Theorem 2.3.2. Let T ∈ T[n],r. For n ≥ 4 and r ≤ ⌈n2 ⌉, the join variety VT1 ∗ . . . ∗ VTr

associated to the r-class Jukes-Cantor mixture model is nondefective.

Proof. Let T ∈ T[n],r, by Lemma 1.4.13, to show nondefectiveness it will be enough to

find a vector v = (v1, . . . , vr) so that for 1 ≤ i ≤ r, dimR⟨Di(v)⟩R = (2n − 3) + 1. Thus,

C1 + . . . + Cr will have affine dimension r(2n − 3) + r, and after we set each aeA = 1, the

projective dimension of VT1 ∗ . . . ∗ VTr will be r(2n − 3) + (r − 1) as desired.

The set of winning directions of i at v, Di(v), is a set of 0/1 vectors in R4n−6. Our

goal will be to construct the vector v in such a way that the vectors in each Di(v) span a

space of dimension 2n−2. Recall that for a tree T , the distinct Fourier coordinates are in

bijection with the subforests of T . Therefore, each b ∈ B induces a subforest on the trees

T1, . . . ,Tr, the number of leaf edges of which, tb, depends only on the number of entries

that are not A in b. For example, if b = AACGT then tb = 3 since in any 5-leaf tree the

subforest induced by b contains three leaf edges.

Case 1: r is even

Construct the vector v = (v1, . . . , vr) as follows. Each vi has 2n entries corresponding to

leaf edges, half of which correspond to the variables aeC and half to the homogenizing

variables aeA. Let the entries of vi corresponding to leaf edges aeC be equal to γi, to leaf

edges aeA equal to δi, and set all other entries equal to zero.

Then for 1 ≤ i ≤ r, b ∈ B,
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⟨vi, αi,b⟩ = γitb + (n − tb)δi = (γi − δi)tb + nδi.

Notice that this value depends only on the number of leaf edges in the subforest of Ti

induced by b. Let µi ∶ R→ R be given by

t↦ (γi − δi)t + nδi.

The two parameters γi and δi allow us to make µi whatever line we wish in R2. Now

we have ⟨vi, αi,b⟩ = µi(tb), and as explained, we do not need to know anything about the

topology of the tree Ti to compute this value. Thus, if µi(t) < µj(t) for all j /= i, then for

any b with tb = t, i wins b at v.

Choose γi and δi so that min
j

(µj(t)) is a continuous piecewise linear function with

min
j

(µj(t)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µ1(t) if t ∈ [0, 5
2]

µi(t) if t ∈ [2i − 3
2 ,2i +

1
2] for 1 < i ≤ r

Then 1 wins b at v if tb = 0,2, and for 1 < i ≤ r, i wins b at v if tb = 2i or 2i − 1.

Form the matrices Mi(v) with columns equal to the vectors in Di(v). Now we just

need to show that for 1 ≤ i ≤ r, rank(Mi(v)) = (2n − 3) + 1. In order to do so, we will

reinterpret our matrices in order to utilize previous results about reconstructing trees

from subtree weights. Let T ′ be a tree, and assign to each edge a positive weight w(e).

Define the weight of a subforest to be the sum of the weights of the edges contained in

the subforest. Let M ′
i(v) be the matrix consisting of the first 2n − 3 rows of Mi(v) and

w =

⎛
⎜
⎜
⎜
⎝

w(e1)

⋮

w(e2n−3)

⎞
⎟
⎟
⎟
⎠

,

then M ′
i(v)

Tw is a column vector with j-th entry equal to the weight of the subforest

corresponding to the j-th column of M ′
i(v).

M ′
1(v) contains column vectors corresponding to the empty subforest as well as the

subforests with two leaf edges. A subforest with exactly two leaf edges with degree one

vertices u and v is just the path between u and v with weight d(u, v). Therefore, for

fixed w, the entries of the column vector M ′
1(v)w determine a tree metric δT ′ which has
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a graph realization T ′. By the Tree-Metric theorem ([PS04, SS03]) T ′ is the unique tree

metric representation of δT ′ , and w is the unique solution to

M ′
1(v)

Tx =M ′
1(v)

Tw.

Therefore, we know rank(M ′
1(v)) = 2n − 3. In fact, we have that the column rank of

just the columns corresponding to subforests with two leaf edges is equal to 2n − 3.

Let (x1, . . . , x2n−3, y1, . . . , y2n−3)
T be an arbitrary vector in R4n−6 where x1, . . . , xn and

y1, . . . , yn are the coordinates corresponding to leaf parameters. Then each of the columns

is contained in the subspace defined by

x1 + . . . + xn =
2

n − 2
(y1 + . . . + yn).

The column corresponding to the empty subforest is clearly not contained in this sub-

space, so its addition increases the column rank by one, which implies rank(M1(v)) =

2n − 2.

For i ≥ 2, in order to show that rank(Mi(v)) = 2n − 2, we will first show that we can

recover every edge weight if we know the weight of the subforests on 2i and 2i− 1 leaves.

To determine the weight of a leaf edge uv with degree three vertex u, choose a subforest

with 2i leaves that includes all three edges incident to u. Choosing such a subforest is

always possible since 2i ≥ 3. Removing uv results in a subforest with 2i − 1 leaves with

corresponding vector also in Di(v). The difference of the weights of these two subforests

determines the weight of the leaf edge.

For an internal edge uv, we construct a subforest that includes the edge uv and the

other four edges incident to either u or v. The fact that 2i ≥ 4 ensures that such a

subforest exists. Again, omitting uv from this subforest gives us a different subforest on

2i leaves, and subtracting, we obtain the weight of uv.

For each edge, we found two subforests that differed by exactly that edge. Subtracting

these vectors we obtain every column of the matrix
⎛

⎝

I

−I

⎞

⎠
, where I is the (2n−3)×(2n−3)

identity matrix. Anything in the column span of these vectors possesses the property that

the entry for aeC is just the negative of the entry for aeA. Therefore, adding any vector

without this property to the set, that is, adding any of the other subforest vectors,

increases the rank by one. Thus, rank(Mi(v)) = 2n − 2.
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Case 2: r is odd

We construct the vector v = (v1, . . . , vr) as in the first case so that min
j

(µj(t)) is a

continuous piecewise linear function, but with

min
j

(µj(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ1(t) if t ∈ [0, 5
2]

µ2(t) if t ∈ [5
2 ,4]

µ3(t) if t ∈ [4, 11
2 ]

µi(t) if t ∈ [2i − 5
2 ,2i −

1
2] for 3 < i ≤ r.

Notice that no i wins v at b if tb = 4, but that if tb /= 4, then

• 1 wins b at v if tb = 0 or 2

• 2 wins b at v if tb = 3

• 3 wins b at v if tb = 5

• for 3 < i ≤ r, i wins b at v if tb = 2i − 2 or tb = 2i − 1.

Let sb be the number of internal edges of the subforest induced by b on T3. We will

perturb the entries of v3 so that none of the above winning directions is affected but so

that 2 wins b at v if tb = 4 and sb = 0 and 3 wins b at v if tb = 4 and sb > 0.

First we will show that for tb = 4 and sb = 0, ⟨v3, α3,b⟩ > ⟨v2, α2,b⟩. Set the entries of v3

corresponding to internal edges aeC equal to ζ and to internal edges aeA equal to η. Let

µ̃3(s, t) = µ3(t)+ζs+(n−3−s)η. Now ⟨v3, α3,b⟩ = µ̃3(sb, tb) and for i /= 3, ⟨vi, αi,b⟩ = µi(tb).

Let η = ε > 0 and ζ = −ε(n − 3.9). If tb = 4 and sb = 0, then ⟨v3, α3,b⟩ = µ̃3(0,4) =

µ3(4) + ε(n − 3) = µ2(4) + ε(n − 3) = ⟨v2, α2,b⟩ + ε(n − 3) > ⟨v2, α2,b⟩.

By our choice of ζ and η, as s increases µ̃3(s, t) decreases. Therefore, to show that

⟨v3, α3,b⟩ < ⟨v2, α2,b⟩ when tb = 4 and sb > 0, it is enough to show that ⟨v3, α3,b⟩ < ⟨v2, α2,b⟩

when tb = 4 and sb = 1. In that case, we have ⟨v3, α3,b⟩ = µ̃3(1,4) = µ3(4) − ε(n − 3.9) +

ε(n − 4) < µ3(4) = µ2(4) = ⟨v2, α2,b⟩. Now choose ε > 0 small enough so that we do not

affect any of the other winning directions. Then as desired, 2 wins b at v if tb = 4 and

sb = 0 and 3 wins b at v if tb = 4 and sb > 0.

Now we would like to show that for 1 ≤ i ≤ r, dimR⟨Di(v)⟩R = 2n − 2. When i = 1,

the proof is the same as in the even case. Likewise, for i > 3, Di(v) contains vectors
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corresponding to subforests with 2i− 2 and 2i− 1 leaves. Essentially the same arguments

from the even case where Di(v) contained vectors corresponding to subforests with 2i−1

and 2i leaves show that dimR⟨Di(v)⟩R = 2n − 2. Therefore, we just need to establish the

rank of M2(v) and M3(v).

M ′
2(v) contains vectors corresponding to every 3-leaf subtree of T2. Just as before,

given the weight vector w, M ′
2(v)

Tw encodes the weight of every 3-leaf subtree. The main

theorem in [PS04] implies that these weights uniquely determine w, so rank(M ′
2(v)) =

2n − 3. Every one of these vectors is contained in the hyperplane defined by

x1 + . . . + xn =
3

n − 3
(y1 + . . . + yn).

Since any binary tree with four or more leaves contains at least two cherries, T3 has a 4-

leaf subforest with no internal edges, and 2 wins v at the coordinate corresponding to this

subforest. The vector corresponding to this subforest is not contained in the hyperplane

above, so rank(M2(v)) = 2n − 2.

Again as before, for each edge e of T3 we use two subforests from the set of 4 and

5-leaf subforests that differ only by e to determine w(e). To carry out this procedure,

we never require a subforest with no internal edges. This would only be the case if when

isolating an internal edge e with endpoints u and v, every other edge adjacent to u and

v was a leaf edge. However, that would imply that n = 4, which is contradiction. Again,

the columns of the matrix
⎛

⎝

I

−I

⎞

⎠
are in the column span and adding any of the original

subforest vectors gives us rank(M3(v)) = 2n − 2.

2.4 Phylogenetic Invariants

The fact that D(3) = 6 means that to show the generic identifiability of the tree parame-

ters of the 3-class Jukes-Cantor mixture model for 6-leaf trees it is enough to separate all

6-leaf triplets. While this list of triplets is at least finite, there are still 19,698,048,370

pairs of 6-leaf triplets, making it infeasible to try to list all pairs and separate them

directly. For some pairs S,T ∈ T[6],3, there is a disentangling set K such that ∣K ∣ < 6, so

our strategy is to first generate all pairs of 5-leaf triplets and wherever possible show the

mutual noncontainment of their corresponding varieties. The results in Section 2.3 imply

that we actually only need to show the two varieties are not identical, and to do so we
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will need to find a phylogenetic invariant that holds for one mixture and not the other.

Once complete, we will have a short list of 5-leaf triplet pairs for which we are unable

to show that their varieties are not identical. From this list, we arrive at a much smaller

list of pairs of 6-leaf triplets which we need to separate using invariants. For these 6-leaf

triplets, we use linear invariants and higher degree invariants to separate all of the pairs.

This final step in the proof of Theorem 2.0.1 is highly computational. The steps are

all completely contained in the three Maple [Map] worksheets

LinearInvariants 5Leaf.mw, LinearInvariants 6Leaf.mw,

Higher Degree Invariants.mw

which are located at the website:

http://www4.ncsu.edu/~smsulli2/Pubs/ThreeTreesWebsite/threetrees.html

We outline the methods for finding separating linear invariants and higher degree

invariants in the next two subsections.

2.4.1 Linear Invariants

Our first step will be to separate all 5-leaf triplet pairs by finding linear invariants that

hold for one triplet but not the other. A few observations will help us reduce the dimension

of the ambient space of the varieties. For our purposes, it is unnecessary to calculate

invariants that hold for all mixtures. For the Jukes-Cantor model, every model will have

linear invariants arising from permutations on the set {C,G,T}. For example, any 5-leaf

mixture will have the same parameterization on the coordinates in the set

{qCCCGT , qGGGCT , qTTTGC , qCCCTG, qGGGTC , qTTTCG}.

Therefore, the difference of any two of these elements is an invariant for every 5-leaf

3-class Jukes-Cantor mixture model. We will only consider the lexicographically first

element as a representative of each such set. By doing this, and removing coordinates

that are always zero, we can perform our calculations in C51 instead of C1024. (In the

provided Maple file, we also exclude the coordinate qAAAAA, which is not involved in any

linear invariant).

Applying an element of S5 to the leaf labels of all of the trees in a mixture model

merely permutes the coordinates of our parameterization. As a result, once we have
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determined that the models corresponding to a 5-leaf triplet pair do not in fact have the

same variety, then by applying the elements of S5 to all six trees in the pair, we generate

new 5-leaf triplet pairs that do not have the same variety. To illustrate, although there

are 680 different identical 5-leaf triplet pairs ((S,S) ∈ T[5],3 ×T[5],3), all of these pairs can

be generated by applying an element of S5 to one of only 28 such pairs.

The following lemma allows us to compute the linear invariant space of a 3-class

mixture from the linear invariant space of the constituent models.

Lemma 2.4.1. A linear polynomial f is an invariant of VT1 ∗ VT2 ∗ VT3 ⇐⇒ f is an

invariant of VT1 , VT2 , and VT3.

Proof. (⇒) Suppose f is a linear invariant of VT1 ∗ VT2 ∗ VT3 . By definition, f(v) = 0 for

all v ∈ VT1 ∗ VT2 ∗ VT3 . But each VTi ⊂ VT1 ∗ VT2 ∗ VT3 , so f must evaluate to zero on each

VTi . Therefore, f is an invariant for VT1 , VT2 , and VT3 .

(⇐) Suppose f is a linear invariant for VT1 , VT2 , and VT3 . Recall that any element of v ∈

VT1∗VT2∗VT3 can be written as π1v1+π2v2+π3v3 for some (v1, v2, v3, π) ∈ VT1×VT2×VT3×∆2.

Then by linearity, f(v) = f(π1v1 + π2v2 + π3v3) = π1f(v1) + π2f(v2) + π3f(v3) = 0 since

each f(vi) = 0 .

In the provided code, we compare all 5-leaf triplet pairs, and up to the action of S5,

there are 36 pairs with the same linear invariant space. As mentioned, this list consists

of the 28 pairs of identical triplet pairs ((S,S) ∈ T[5],3 × T[5],3) as well as 8 additional

pairs where the two triplets are distinct. It should be noted that these eight additional

pairs are what prevent us from generalizing Theorem 2.0.1 to 5-leaf trees. It may be that

these eight pairs are separable, but if that is the case, separating them would require

identifying higher degree invariants. Below, we will discuss a method for finding higher

degree invariants for 6-leaf trees, but the same method does not yield separating invariants

for these 5-leaf triplet pairs.

If there exists S,T ∈ T[6],3 such that VT1 ∗ VT2 ∗ VT3 = VS1 ∗ VS2 ∗ VS3 , then it must be

the case that for any five element subset K ⊂ [n], (S∣K ,T∣K) (or some permutation of

the leaves thereof) is one of the 5-leaf triplet pairs in our list. Therefore, the only 6-leaf

triplet pairs that are candidates for inseparability are those generated by attaching an

additional edge to each of the six trees in an inseparable 5-leaf triplet pair. Since there

are 36 pairs, and each 5-leaf tree has 7 edges, the number of 6-leaf triplets we must
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Figure 2.5: A 6-leaf triplet pair that is not separated by linear invariants.

consider is less than (36)(76) = 4,235,364. This is far fewer than would be expected had

we proceeded directly to the 6-leaf case.

Just as in the 5-leaf case, nondefectiveness of all of the involved varieties is ensured

by Theorem 2.3.2, so it suffices to show that VT1 ∗ VT2 ∗ VT3 /= VS1 ∗ VS2 ∗ VS3 . This fact is

reflected in our computation of the set AllSixLeafPairs, which contains the eighty-five

6-leaf triplet pairs (up to the action of S6) that are not separated by any linear invariant.

For these eighty-five pairs of 6-leaf triplets we must find higher degree invariants that

separate them.

2.4.2 Invariants of Higher Degree

If we wish to determine identifiability, we must broaden our search to invariants of higher

degree. Unfortunately, we glean little from studying VT1 , VT2 , and VT3 individually, as there

is no reason to expect that a nonlinear invariant that holds for all three holds for their

join.

After removing trivial coordinates and linear invariants that hold for all 6-leaf trees we
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can perform our calculations for 6-leaf trees in a 186-dimensional space. When searching

for linear invariants, we will also disregard any coordinate in which the character A

appears in the index so that the bulk of our computations are done in a 31-dimensional

space. If we let T be the 6-leaf triplet described in Figure 2.5 (in the worksheet, these

trees are labeled T16,T19 and T63), there are 61 linearly independent elements of I(VT1 ∗

VT2 ∗VT3)1 which define a 125-dimensional linear subspace containing VT1 ∗VT2 ∗VT3 . Since

dim(VT1 ∗VT2 ∗VT3) = 29, at least for this particular triplet, higher degree invariants must

exist. In order to find these, we will use the explicit parameterization of the variety in

Fourier coordinates.

When writing out the explicit parameterization of a coordinate we dehomogenize by

setting all of the aeA = 1. This allows us to drop the subscripts on the parameters entirely.

For arbitrary n-leaf trees, we will further simplify notation by extending the numbering

of the trivial splits to a numbering of all of the splits so that every split is labeled by

some element of the set [2n − 3]. Thus, in this more compact notation the coordinate in

Example 1.4.3 can be written qCAGGTG = a1a3a4a5a6a7.

Example 2.4.2. For the multiset of trees from Figure 2.5, the parameterization of three

different coordinates of VT is listed below. We let a
i∣[6]∖{i}
C = ai, b

i∣[6]∖{i}
C = bi, c

i∣[6]∖{i}
C = ci,

a
15∣2346
C = a7, a

46∣1235
C = a8, a

135∣246
C = a9, b

12∣3456
C = b7, b

15∣2346
C = b8, b

126∣345
C = b9, c

12∣3456
C = c7,

c
34∣1256
C = c8, and c

125∣346
C = c9.

qAAAACC = π1a5a6a7a8a9 + π2b5b6b8b9 + π3c5c6c9

qAAACAC = π1a4a6 + π2b4b6b9 + π3c4c6c8

qAAACCA = π1a4a5a7a8a9 + π2b4b5b8 + π3c4c5c8c9

Theoretically, we should be able use the equations like those in Example 2.4.2 to construct

an ideal in

C[y1, . . . , y186, a1, . . . , a9, b1, . . . , b9, c1, . . . , c9, π1, π2],

and eliminate to obtain a Gröbner basis for I(VT1 ∗ VT2 ∗ VT3) that includes nonlinear

invariants. The number of variables and equations involved in the computation make

this infeasible.

Instead, we will apply heuristic methods to reduce the number of variables in the

ideal before we attempt elimination. Our strategy will be to find linear invariants that
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hold for VT2 and VT3 , but not for VT1 . The resulting equations will not evaluate to zero

on all of VT , but will not involve the parameters from T2 or T3 at all. To illustrate, we

revisit the trees in Figure 2.5, and look at a few more coordinates.

qCCCAAC = π1a1a2a3a6a7a8 + π2b1b2b3b6b8b9 + π3c1c2c3c6c8

qCCGAAG = π1a1a2a3a6a7a8a9 + π2b1b2b3b6b8b9 + π3c1c2c3c6c8

qCACCGT = π1a1a3a4a5a6a7a8a9 + π2b1b3b4b5b6b7b8b9 + π3c1c3c3c4c5c6c7c9

qCAGGTG = π1a1a3a4a5a6a7 + π2b1b3b4b5b6b7b8b9 + π3c1c3c3c4c5c6c7c9,

Now it is easy to spot linear invariants for VT2 and VT3 , and subtracting we obtain

qCCCAAC − qCCGAAG = π1a1a2a3a6a7a8 − π1a1a2a3a6a7a8a9

qCACCGT − qCAGGTG = π1a1a3a4a5a6a7a8a9 − π1a1a3a4a5a6a7.

In this particular case, dim(I(VT2 ∗ VT3)1) − dim(I(VT )1) = 20, so there are twenty

linearly independent relations only involving the parameters from T1. We introduce new

variables for the image space and use these relations to construct the ideal,

J = ⟨y1 − (π1a1a2a3a6a7a8 − π1a1a2a3a6a7a8a9), . . . ,

y20 − (π1a1a3a4a5a6a7a8a9 − π1a1a3a4a5a6a7)⟩,

where J ⊆ C[y1, . . . , y20, a1, . . . , a9, π1]. With fewer parameters, we can now compute ele-

ments of the Gröbner basis for J ∩C[y1, . . . , y20] using elimination in Macaulay2 [GS02].

This gives us relations in the yi variables, which we translate back into our original

coordinates. For this particular triplet, we find

(qCCCAAC − qCCGAAG)(qCACCGT − qCAGGTG) =

(qCCCAGT − qCCGATC)(qCACCAC − qCAGGAC).

Finally, to separate the triplet pair from Figure 2.5, we substitute the parameterization

of VS into this relation and confirm that it does not evaluate to zero.

This technique allows us to find an invariant for one mixture that does not hold for the
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other for all of the triplet pairs contained in AllSixLeafPairs. As outlined, the existence

of these invariants is sufficient to establish the generic identifiability of the tree parameters

of the 3-class Jukes-Cantor mixture model. Among the supplementary materials is the

worksheet Higher Degree Invariants.mw which lists an invariant separating each triplet

pair and provides code to quickly generate the coordinate functions for verification.
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Chapter 3

The Defining Equations of the

Strand Symmetric Model

3.1 Introduction

The strand symmetric model is a phylogenetic model designed to reflect the symmetry

inherent in the double-stranded structure of DNA. This symmetry naturally imposes re-

strictions on the transition probabilities assigned to each edge and imposing only these

restrictions gives the general strand symmetric model (SSM). The phylogenetic invariants

of a model are algebraic relationships that must be satisfied by the probability distribu-

tions arising from the model. As we have seen in Chapter 2, phylogenetic invariants can

be useful for proving identifiability results. Results in [DK09] imply the ideal of phylo-

genetic invariants for the SSM on any binary tree can be determined from the ideal of

phylogenetic invariants on the claw tree, K1,3.

Though the general strand symmetric model itself is not group-based, Casanellas and

Sullivant [CS05] showed that it is still amenable to the Fourier-Hadamard transform

technique of [ES93, SESP93]. In the Fourier coordinates, it becomes evident that the

parameterization of the model on K1,3 is a coordinate projection of the secant variety of

the Segre embedding of P3 × P3 × P3. From this observation, the same authors were able

to find 32 degree three and 18 degree four invariants of the homogeneous ideal for K1,3

and to show that these invariants generate the ideal up to degree four. Whether or not

these polynomials generate the entire ideal was heretofore unknown.

In this chapter, we show that these 50 equations in fact generate the ideal of the SSM
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on K1,3. The method that we use is the prime-dimension approach introduced in Section

1.4.2. First, we apply the tropical secant dimension technique to the parameterization

of the model after the matrix-valued Fourier transform to determine the dimension of

the variety of probability distributions associated to the model. Then, using Macaulay2

[GS02], we show that the ideal generated by these fifty equations defines a variety of the

same dimension. Finally, with the aid of symbolic computation we generate a decreasing

sequence of elimination ideals demonstrating that the ideal in question is prime. Thus,

the variety defined by these equations is irreducible, contains the variety of the model,

and is of the same dimension as the variety of the model, from which the result follows.

3.2 Phylogenetic Invariants of the SSM

3.2.1 Preliminaries

The general strand symmetric model on an n-leaf rooted tree T is a phylogenetic model of

4-state character change. Since the SSM is specifically intended to model DNA evolution,

we associate to each node v of T a random variable Xv with state space corresponding to

the DNA bases {A,C,G,T}. Associated to each edge is a 4×4 transition matrix with rows

and columns indexed by the bases. The entry θij encodes the probability of changing

from character i to j along that edge. In the double helix structure of DNA it is always

the case that the bases A and T are paired together and likewise for C and G. So that

our model reflects this strand symmetry, we let π = (πA, πC , πG, πT ) be the distribution

of the bases at the root, and set πA = πT and πC = πG. Additionally, since a character

transition in one strand will induce a corresponding transition in the other, we insist

θAA = θTT , θAC = θTG, θAT = θTA, θCA = θGT , θCC = θGG, θCG = θGC , θCT = θGA.

The key observation from [CS05] is that the SSM is a matrix-valued group-based

model. Identify the character states of the random variables of a phylogenetic model with

elements of G×{0, . . . , l} where G is a finite abelian group and l ∈ N. Then each character

state is indexed by an element ( j
i
) where j ∈ G and i ∈ {0, . . . , l}. In these indices, the

entries of the transition matrix along edge E are written Ej1j2
i1i2

and the probability that

the root is in state ( j
i
) is equal to Rj

i .

Definition 3.2.1. A phylogenetic model is a matrix-valued group-based model if for each
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edge, the matrix transition probabilities satisfy

Ej1j2
i1i2

= Ek1k2
i1i2

whenever j1 − j2 = k1 − k2 and the root distribution probabilities satisfy Rj
i = R

k
i .

Let G = Z2 and l = 1, then the following identifications make manifest the matrix-valued

group-based structure of the SSM: A = ( 0
0 ), G = ( 0

1 ), T = ( 1
0 ), C = ( 1

1 ).

The tree parameter of an algebraic model determines a polynomial map sending each

choice of numerical parameters into the probability space indexed by n-tuples of the

characters. For the SSM on a tree T , if we let ΘT be the space of numerical parameters

we have the following map,

φT ∶ ΘT →∆4n−1.

If we do not impose the stochastic conditions on the parameters then Im(φT ), where the

closure is taken in the Zariski topology, is a complex algebraic variety. In Section 16.1

of [CS05], the authors detail the group-valued Fourier transform and show how it can

be used to obtain a simple parameterization for the closure of the cone over the SSM

on T =K1,3, denoted CV (T ). Letting qmnoijk be the transformed coordinates of the image

space, we have

ψ ∶ qmnoijk = dmm0i enn0j f
oo
0k + d

mm
1i enn1j f

oo
1k

if m+n+o ≡ 0 in Z2, and qmnoijk = 0 otherwise. Now to determine the defining equations for

the SSM on K1,3, it is enough to determine the defining equations for Im(ψT ) = CV (T ).

The rest of the paper will be concerned with proving the following theorem.

Theorem 3.2.2. The vanishing ideal of the strand symmetric model for the graph K1,3

is minimally generated by 32 cubics and 18 quartics. The ideal has dimension 20, degree

9024, and Hilbert series

1 + 12t + 78t2 + 332t3 + 984t4 + 1908t5 + 2394t6 + 1908t7 + 984t8 + 332t9 + 78t10 + 12t11 + t12

(1 − t)20
.

Note that the Hilbert series suggests that the ideal is Gorenstein though we have not

been able to prove this.

55



3.2.2 Dimension

A toric variety is a variety that is parametrized by monomials. Let C ⊂ CV (T ) be the toric

variety parameterized in each coordinate only by the monomial containing variables with

zero in the first entry of the subscript. Thus, CV (T ) = C{2}, the second secant variety of

C, and we can compute its dimension using the techniques of Section 1.4.3.

To apply the tropical secant dimension approach we will actually use Theorem 15

from [APRS11] which is a reformulated version of Lemma 1.4.13 more convenient for our

purposes in this chapter. We associate to each monomial xu11 x
u2
2 . . . xunn in the parameter-

ization of a toric variety an integer vector u and let A be the set of these integer vectors.

Let H = {x ∈ Rd ∶ cTx = e} be a hyperplane in Rd that splits Rd into two components

which we will label H+ = {x ∈ Rd ∶ cTx > e} and H− = {x ∈ Rd ∶ cTx < e}.

In our case, the matrix A is a 12×32 matrix of rank 10, with each column containing

exactly threes 1’s and nine 0’s. If we let {e0
0, e

0
1, e

1
0, e

1
1} denote the standard basis in R2×2

then the thirty-two columns of A are

{emi ⊕ enj ⊕ e
o
k ∈ R12 ∶m + n + o ≡ 0 in Z2}.

For example, the column of A corresponding to the coordinate q110
101 is given by

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊕

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊕

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

which we write as (0,0,0,1,0,0,1,0,0,1,0,0)T .

Theorem 3.2.3. [APRS11, Theorem 15] Let VA be a projective toric variety with corre-

sponding set of exponent vectors A ⊂ Nd. Let H be a hyperplane not intersecting A. Let

A+ = A ∩H+ and A− = A ∩H−. Then dim(V
{2}
A ) ≥ rank(A+) + rank(A−) − 1.

Let IF be the ideal generated by the fifty equations found in [CS05].

Lemma 3.2.4. dim(CV (T )) = dim(V (IF )) = 20.

Proof. Regard C as a projective variety so that C = VA from Theorem 3.2.3. The hyper-

plane defined by the vector c = (1,0,1,0,1,0,1,0,1,0,1,0) and e = 3
2 gives ∣A+∣ = ∣A−∣ = 16
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and rank(A+) = rank(A−) = 10. Therefore, by Theorem 3.2.3, as a projective variety

dim(C{2}) ≥ 19 and as an affine cone dim(CV (T )) ≥ 20. Using Macaulay2 we determine

that dim(V (IF )) = 20, and since CV (T ) ⊆ V (IF ), we must have dim(CV (T )) = 20.

3.2.3 Primality

In this section we outline our computations for proving that the ideal IF is prime. In

Section 1.4.2, we introduced Lemma 1.4.11 which allows us to prove that an ideal is

prime by showing that a certain elimination ideal is prime. In order to apply the lemma,

we will need a way to show that an equation is not a zero divisor modulo an ideal. We

will do this in Macaulay2 by computing ideal quotients.

Definition 3.2.5. Let I and J be ideals in a commutative ring R, the ideal quotient of

I by J is

(I ∶ J) ∶= {r ∈ R ∣ rJ ⊂ I}.

Lemma 3.2.6. Let R = K[x], J ⊂ R an ideal, and g ∈ R. Then g is not a zero divisor of

R/J ⇐⇒ (J ∶ ⟨g⟩) = J .

Proof. (⇒) Suppose g is not a zero divisor of R/J and let f ∈ (J ∶ ⟨g⟩). By the definition

of the ideal quotient, f⟨g⟩ ⊂ J ⇒ fg = 0 in R/J . Since g is not a zero divisor, f = 0 in

R/J and so f ∈ J . Therefore, (J ∶ ⟨g⟩) ⊂ J , and it is obvious that J ⊂ (J ∶ ⟨g⟩).

(⇐) Suppose J = (J ∶ ⟨g⟩) and fg = 0 in R/J . This implies that f⟨g⟩ ⊂ J and so

f ∈ (J ∶ ⟨g⟩) = J . Therefore, g is not a zero divisor of R/J .

Lemma 3.2.7. The ideal IF generated by the 32 cubics and 18 quartics of the general

strand symmetric model on K1,3 is prime.

Proof. The proof is obtained by repeated application of Lemma 1.4.11. The computations

we describe can be found at

http://www4.ncsu.edu/~smsulli2/Pubs/LooseStrandsWebsite/SSM -

Supplement.html

in the Macaulay2 file SSM Supplement where the symbols 0,1,2, and 3 are substituted for

( 1
1 ), ( 1

0 ), ( 0
1 ), and ( 0

0 ).
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First, we let I0 = IF . Beginning with k = 1, we find a polynomial fk = gkxk + hk ∈ Ik−1,

verify that gk is not a zero divisor modulo Ik−1, and then eliminate xk to obtain the ideal

Ik. In this way we generate a decreasing chain of elimination ideals

IF = I0 ⊃ I1 ⊃ I2 . . . ⊃ I10.

Using the isPrime function in Macaulay2, we show that I10, and hence every ideal in the

sequence, is prime.

While this is the general outline of our approach, it is actually computationally easier

to show that none of the gk that we encounter is a zero divisor modulo the respective

elimination ideal first. Identify the new indices 0,1,2, and 3 with the set of standard basis

vectors {e1, e2, e3, e4} and define a multigrading where the weight of qijk is ei+1⊕ej+1⊕ek+1.

Let qαqβ −qγqδ be a nontrivial binomial that is homogeneous with respect to this grading.

For this particular sequence of ideals we are always able to choose fk = gkxk + hk so that

gk is either such a binomial or a product of such binomials. There are two elementary

observations that will be useful:

(i) g = l1l2 is a zero divisor modulo J if and only if at least one of l1 and l2 is.

(ii) g is not a zero divisor modulo any elimination ideal of J if it is not a zero divisor

modulo J .

Thus, to show that none of the gk is a zero divisor modulo Ik−1 it is enough to show that

none of the homogeneous binomials is a zero divisor modulo IF . As noted above, we do

this by verifying that (IF ∶ gk) = IF .

The symmetry of IF enables us to establish this by considering only a small sub-

set of the homogeneous binomials. There is a group action of S4 × S4 × S4 ⋊ S3 on

(Seg(P3 × P3 × P3)){2}, that comes from performing the rank-preserving column and

transposition operations. Hence, the same group acts on I((Seg(P3×P3×P3)){2}), where

column operations correspond to changing the indices of the variables and transposition

operations correspond to permuting the indices of each variable. Let G be the subgroup

of elements of S4 × S4 × S4 ⋊ S3 satisfying g ⋅ qmnoijk = qm
′n′o′

i′j′k′ with m + n + o ≡m′ + n′ + o′ in

Z2 for each of the 64 variables. Since

I(CV (T )) = I((Seg(P3 × P3 × P3)){2}) ∩C[qmnoijk ∶m + n + o = 0],
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G acts on I(CV (T )), and since the generators of IF generate I(CV (T )) up to degree

four, G acts on IF as well. Let H be the subgroup of G generated by elements that corre-

spond to changing the indices. For example, h = ((01), (01)(23), (01)) ∈ H interchanges

0 ↔ 1 in the first index, 0 ↔ 1 and 2 ↔ 3 in the second, and 0 ↔ 1 in the third so that

h ⋅ (q021q113 − q013q121) = (q130q003 − q103q030). Then

H = ⟨ ((01), id, id), (id, (01), id), (id, id, (01)), ((23), id, id), (id, (23), id),

(id, id, (23)), ((0213), (0213), id), ((0213), id, (0213))⟩

is a 256-element normal subgroup and G ≅ H ⋊ S3. One can check that the set of homo-

geneous binomials partitions into three orbits under the action of G with representatives

q002q013 − q003q012, q002q113 − q003q112, and q002q120 − q020q102. In the file SSM Supplement we

show that none of the homogeneous binomials is a zero divisor by showing that none of

these three binomials is a zero divisor modulo IF .

Having shown that IF is prime, we are able to give a short proof of Theorem 3.2.2.

Proof of Theorem 3.2.2. The containment IF ⊂ I(CV (T )) implies that CV (T ) ⊂ V (I).

By Lemma 3.2.7, IF is prime and so V (IF ) is an irreducible variety. By Lemma 3.2.4,

CV (T ) is an irreducible variety contained in an irreducible variety of the same dimension,

so CV (T ) = V (IF ) and IF = I(CV (T )). Knowing explicit generators of the vanishing

ideal of the strand symmetric model on the graph K1,3, the claims about the rank,

degree, and Hilbert series of the ideal are easily verified by the Macaulay2 code in SSM -

Supplement.
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Chapter 4

Initial Ideals of Phylogenetic Secant

Ideals

4.1 Introduction

In Chapter 2, we saw that the ideal of phylogenetic invariants for a mixture model on

trees of the same topology is a secant ideal. Secant ideals also appear in the study of the

general k-state Markov model on the claw tree K1,3. The variety of the k-state model is

the k-secant variety of a Segre product, specifically, (Seg(Pk−1×Pk−1×Pk−1)){k} [GSS05].

As with the strand symmetric model, determining the ideal of phylogenetic invariants

for this tree allows one to determine the ideal of phylogenetic invariants for the general

Markov model on any binary tree [AR08b]. The set of distributions associated to other

statistical models outside of phylogenetics exhibit the structure of secant varieties as well

(see e.g., [DSS07] and [Sul08]).

One approach to studying ideals is via initial ideals. We observed at the end of Section

1.3 that an ideal and its initial ideals have the same Hilbert series, and consequently, share

many of the same properties. In [SS06], the authors study the relationship between the

secant of an initial ideal and the initial ideal of a secant ideal. In particular, they explore

under what conditions these operations commute. In this chapter, we investigate the

relationship between secant ideals of initial ideals and initial ideals of secant ideals for

two classes of ideals connected to binary trees.

The binary Jukes-Cantor model or Cavender-Farris-Neyman (CFN) model is a two-

state group-based phylogenetic model. As a group-based model, it is subject to the Fourier
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transformation, and we will denote by IT the ideal of phylogenetic invariants for the CFN

model on the tree T in the Fourier coordinates. Following the convention for secant ideals,

we denote the ideal of the 2-class CFN mixture model on T by IT ∗ IT and call this the

CFN secant ideal for T .

In Section 4.2, we compute the CFN secant ideals for both 6-leaf tree topologies. More

precisely, we choose a particular labeling of the leaves for each 6-leaf tree topology and

compute the ideals for the labeled trees. Of course, if T and T ′ are binary phylogenetic

[n]-trees with the same underlying topology, then IT ∗ IT and IT ′ ∗ IT ′ are isomorphic.

First, we show that in the Fourier coordinates the CFN secant ideal for the 6-leaf

snowflake tree (Figure 4.1a), IS ∗ IS , is isomorphic to that of the known ideal of the

strand symmetric model on the claw tree. Next, we determine the CFN secant ideal for

the 6-leaf caterpillar tree (Figure 4.1b), IC ∗IC, using the prime-dimension approach. Our

computations reveal that HS(IC ∗ IC, t) =HS(IS ∗ IS , t).

(a) Snowflake

(b) Caterpillar

Figure 4.1: The two 6-leaf binary tree topologies.

It is known that for any two n-leaf binary phylogenetic X-trees, the ideals of the

CFN model have the same Hilbert series [BW07]. Moreover, there exists a single ideal,

In, of which the ideal associated to the CFN model of any n-leaf binary phylogenetic

X-tree can be realized as an initial ideal [SX10]. In light of these results, we conjecture

the following.

Conjecture 4.1.1. Let T be an n-leaf binary phylogenetic X-tree and let ω be a weight

vector such that inω(In) = IT . Then inω(In ∗ In) = IT ∗ IT .

In other words, we conjecture that for In and certain weight vectors, the secant of
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the initial ideal is equal to the initial ideal of the secant ideal. If true, this would account

for our observation that HS(IC ∗ IC, t) = HS(IS ∗ IS , t). This is perhaps somewhat

unexpected as it was shown in [SS06] that the operations of taking initial ideals and

secant ideals do not in general commute even when the initial ideals are monomial.

In Section 4.3, we study a second class of ideals in bijection with the set of binary

phylogenetic X-trees which we call the Plücker tree ideals. They are so named because

they can be constructed as initial ideals of the Plücker ideal, I2,n. The Plücker ideal is the

vanishing ideal of the Grassmannian, Gr(2,Cn), in the Plücker coordinates. The secant

ideals of the Plücker tree ideals are then initial ideals of the well-known Pfaffian ideals.

We let JT denote the Plücker tree ideal associated to T . These ideals are discussed in

[SS04] where the following theorem is proven.

Theorem 4.1.2. [SS04] Let T be an n-leaf binary phylogenetic X-tree. There exists a

weight vector ω ∈ Rn and a sign vector τ ∈ {±1}(n
2
) such that JT = τ ⋅ inω(I2,n), where the

sign vector multiplies coordinate pij by τij.

They also appear in [Sul08] which discusses how these ideals and their secants are

connected to Gaussian graphical models and concludes with the following conjecture.

Conjecture 4.1.3. [Sul08, Conjecture 7.10] Let T be an n-leaf binary phylogenetic X-

tree, ω ∈ Rn a weight vector, and τ ∈ {±1}(n
2
) a sign vector such that JT = τ ⋅ inω(I2,n),

then τ ⋅ inω(I
{r}
2,n ) = J

{r}
T .

We show that this conjecture is not true for any r. In the case where r = 2, we also

prove the following theorem giving necessary and sufficient conditions on the topology of

T for the theorem to hold. In the course of doing so, we also furnish a new class of prime

initial ideals of the Pfaffian ideals.

Theorem 4.1.4. Let T be an n-leaf binary phylogenetic X-tree with n ≥ 4 and ω ∈ R(n
2
)

be a weight vector such that inω(I2,n) = JT , then inω(I
{2}
2,n ) = J

{2}
T if and only if T has

fewer than five cherries.

The similarity of Conjectures 4.1.3 and 4.1.1 is obvious. There is also a close relation-

ship between the ideals involved as JT can be viewed as the intersection of IT with a

coordinate subring. Thus, our hope is to better understand the structure of CFN secant

ideals by studying secants of the Plücker tree ideals. Moreover, we hope to gain some

insight into the general structure of initial ideals of secant ideals by studying initial ideals

of the Pfaffian ideals.
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4.2 Second Secants of the CFN Model

Recall that the CFN model is a two-state group-based phylogenetic model where the two

states are identified with Z2. We dissected the various components of the CFN model on

a 3-leaf tree earlier in Example 1.1.7.

Let T be an n-leaf binary phylogenetic X-tree. After the Fourier transformation,

IT ⊆ C[qg ∶ g ∈ (Z2)
n]. Recall that we actually construct IT as IT = I(VT ), where VT is

the variety parameterized as follows.

qg1,...,gn =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∏
B∣B′∈Σ(T )

a
B∣B′

∑i∈B gi
if

n

∑
i=1

gi = 0

0 otherwise

Thus, we can consider IT ⊆ C[q] ∶= C[qg ∶ g ∈ (Z2)
n,∑

n
i=1 gi = 0], a ring of 2n−1

variables. Each variable corresponds to a set of disjoint paths in T involving an even

number of leaves. Notice also that the paths in T are in bijection with coordinates with

exactly two nonzero indices. We will now show that IS ∗IS , the secant ideal for the CFN

model on the 6-leaf snowflake tree, is an ideal with which we are already familiar. If we

let ISSM denote the ideal of the SSM on the claw tree in the Fourier coordinates then we

have the following theorem.

Theorem 4.2.1. IS ∗ IS ≅ ISSM .

Proof. In Chapter 3, we encountered the cone C such that ISSM = I(C∗C) = I(C)∗I(C).

We will now show IS ≅ I(C) by relabeling parameters and coordinates, from which the

theorem follows.

Let Z1 = C[qg ∶ g ∈ (Z2)
6 ∶ ∑

6
i=1 gi ≡ 0] and Z2 = C[qg1g3g5g2g4g6 ∶ g ∈ (Z2)

6 ∶ g1 + g3 + g5 ≡ 0],

so that IS ⊆ Z1 and I(C) ⊆ Z2. Technically, the variables of Z2 are of the form qmnoijk ,

where only the top indices are group elements. However, for the purposes of constructing

a map, we now treat the bottom indices as belonging to Z2 as well. Then the C-algebra

homomorphism σ ∶ Z1 → Z2 defined by

qg1g2g3g4g5g6 ↦ q
(g1+g2)(g3+g4)(g5+g6)
g2g4g6

with inverse map

qg1g3g5g2g4g6 ↦ q(g1−g2)g2(g3−g4)g4(g5−g6)g6
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is an isomorphism.

Now, label the cherries of the snowflake tree by {1,2},{3,4}, and {5,6}. Label the

three interior edges of the snowflake connected to these cherries e7, e8, and e9 respectively.

Let

P1 = C[a1
0, a

1
1, a

2
0, a

2
1, a

3
0, a

3
1, a

4
0, a

4
1, a

5
0, a

5
1, a

6
0, a

6
1, a

7
0, a

7
1, a

8
0, a

8
1, a

9
0, a

9
1].

and

P2 = C[d0
0, d

0
1, d

1
0, d

1
1, e

0
0, e

0
1, e

1
0, e

1
1, f

0
0 , f

0
1 , f

1
0 , f

1
1 ].

Let φ1 ∶ Z1 → P1 and φ2 ∶ Z2 → P2 be the parameterization maps such that IS = ker(φ1)

and I(C) = ker(φ2). Note that

φ1(qg1g2g3g4g5g6) = (a1
g1a

2
g2a

7
g1+g2)(a

3
g3a

4
g4a

8
g3+g4)(a

5
g5a

6
g6a

9
g5+g6).

Therefore, we can construct the 12-dimensional parameter space

P ′
1 = C[a1

h1
a2
h2
a7
h1+h2 , a

3
h1
a4
h2
a8
h1+h2 , a

5
h1
a6
h2
a9
h1+h2 ∶ (h1, h2) ∈ Z2

2],

and regard IC as the kernel of a map φ′1 ∶ Z1 → P ′
1.

Then the C-algebra homomorphism ψ ∶ P ′
1 → P2 defined by

(a1
g1a

2
g2a

7
g1+g2) ↦ dg1+g2g2

(a3
g3a

4
g4a

8
g3+g4) ↦ eg3+g4g4

(a5
g5a

6
g6a

9
g5+g6) ↦ f g5+g6g6 .

with inverse map

dh1h2 ↦ (a1
h1−h2a

2
h2
a7
h1
)

eh1h2 ↦ (a2
h1−h2a

3
h2
a8
h1
)

fh1h2 ↦ (a3
h1−h2a

4
h2
a9
h1
)

is an isomorphism.

Finally, since σ is an isomorphism, we just need to show that σ maps ker(φ′1) = IS

onto ker(φ2) = I(C). One can verify that the following diagram commutes.
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Z1 Z2

P ′
1 P2

σ

φ′1φ
′
1 φ2

ψ

By the diagram, we have ψ−1 ○ φ2 ○ σ = φ′1 and ψ ○ φ′1 ○ σ
−1 = φ2. If z1 ∈ ker(φ′1),

(ψ−1○φ2○σ)(z1) = 0, which implies φ2(σ(z1)) = 0, since ψ−1 is an isomorphism. Therefore,

σ(ker(φ′1)) ⊆ ker(φ2). Likewise, if z2 ∈ ker(φ2), φ′1(σ
−1(z2)) = 0. Thus, σ maps ker(φ′1)

onto ker(φ2).

Next, we compute IC∗IC, the secant ideal for the CFN model on the 6-leaf caterpillar.

We fix a labeling so that the nontrivial splits of the caterpillar tree are 12∣3456,123∣456,

and 1234∣56. Since we do not recognize IC ∗ IC as an ideal we have encountered before

we must compute it directly. In the Fourier coordinates, the CFN ideals are generated

by the 2×2 minors of certain matrices [SX10, Section 7]. Using the known generators for

IC we are able to compute IC ∗ IC up to degree 5 in Macaulay2. This computation and

all other Macaulay2 and Maple computations referenced in this chapter are contained in

the worksheets

CFN 6leaf Caterpillar Secant.m2 and SecantDimension.mw

located at the website:

http://www4.ncsu.edu/~celong2/Thesis%20Supplement.html.

The generators of IC ∗IC of degree five or less generate an ideal J5, and we know that

J5 ⊆ IC ∗ IC. However, we would like to show that J5 = IC ∗ IC. This is the same situation

we saw in Chapter 3 and again we will apply the prime-dimension approach. Explicitly,

to show these ideals are equal we need to show

(i) dim(J5) = dim(IC ∗ IC).

(ii) J5 is prime.

To verify (i), we first find that dim(J5) = 20 using Macaulay2. Since J5 = IC ∗ IC,

we know that dim(IC ∗ IC) ≤ 20. Next, we apply the tropical secant dimension approach

to get a lower bound on dim(IC ∗ IC). Again, we use the formulation in Theorem 3.2.3

which is convenient when working with the second secant of a toric variety. Using random

search, we are able to find a vector as in that theorem which proves dim(IC∗IC) ≥ 20. This
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vector and the computations to verify the lower bound are contained in the supplementary

Maple worksheet SecantDimension.mw.

To confirm (ii), we use Macaulay2 and repeatedly apply Lemma 1.4.11 just as we

did in the proof of Theorem 3.2.2. This gives us a generating set for IC ∗ IC and we can

calculate its Hilbert series. All of these computations are contained in the supplementary

Macaulay2 file CFN 6leaf Caterpillar Secant.m2 Combining Theorems 3.2.2 and 4.2.1,

we know the Hilbert series of IS ∗ IS and we observe the following.

Theorem 4.2.2. HS(IC ∗ IC, t) =HS(IS ∗ IS , t).

4.3 Plücker Tree Ideals

For what follows, it will be useful to have a standard planar embedding our trees. If T is

an n-leaf binary phylogenetic X-tree, then inscribe a regular n-gon on the unit circle in

R2 and choose a planar representation of T so that the leaves are located at the vertices

of the n-gon. Label the leaves of T in increasing order clockwise around the circle. Recall

that the induced 4-leaf subtrees of a tree are called quartets and that a tree is uniquely

determined by its quartets [SS03]. With a circular embedding of T as described, every

induced quartet on the leaves 1 ≤ i < j < k < l ≤ n is either ij∣kl or il∣jk. For trees with

such a circular embedding the vector τ from Conjecture 4.1.3 is equal to the all ones

vector. Thus, for the rest of this chapter we will consider only trees embedded in this

manner so that we can ignore the sign vector entirely.

Let Zn = C[pij ∶ 1 ≤ i < j ≤ n] and

I2,n = ⟨pijpkl − pikpjl + pilpjk ∶ 1 ≤ i < j < k < l ≤ n⟩ ⊆ Z
n

be the the ideal of quadratic Plücker relations. Let T be a binary phylogenetic [n]-tree

and assign positive lengths to the edges of T . The choice of edge lengths naturally induces

a metric d on the leaves of T where d(i, j) is the length of the unique path between i

and j. Let ω ∈ R(n
2
) be the vector with ωij = d(i, j) for i < j. Then

inω(I2,n) = ⟨pikpjl − pilpjk ∶ ij∣kl is a quartet of T ⟩

[SS04, Corollary 4.4]. We call JT = inω(I2,n) the Plücker tree ideal of T . Note that any

choice of positive edge lengths for T yields the same initial ideal.
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Corollary 4.4 from [SS04] also gives us a way to realize JT as the kernel of a homomor-

phism. Let C[y] = C[ye ∶ e is an edge of T ] and φT ∶ Zn → C[y] be the homomorphism

that sends pij to the product of all of the parameters ye corresponding to edges on the

unique path from i to j. Then JT is the toric ideal ker(φT ). Notice the close connection

between JT and IT alluded to above. If we relabel the coordinates of Zn by pij = pei⊕ ej ,

then JT = (IT ∩Zn).

4.3.1 Pfaffian Initial Ideals

The determinant of a 2r×2r skew-symmetric matrix is the square of a polynomial called

the Pfaffian of the matrix. Let I2,n,r be the ideal generated by the 2r×2r subpfaffians of a

generic n×n skew-symmetric matrix P = (pij). Each 2r×2r Pfaffian equation corresponds

to a 2r-element set K ⊆ [n]. The terms appearing in each Pfaffian are then in bijection

with perfect matchings on the set K. The Pfaffian ideals arise as secants of the Plücker

ideal, that is I2,n,r = I
{r−1}
2,n , and for the rest of this paper we will use the latter notation.

This result as well as background and examples for the Pfaffian ideals can be found in

[KL80, PS05]. In this section, we will collect a number of facts about the Pfaffian ideals

which will be useful for proving the results that follow.

Definition 4.3.1. Let p be the 2r×2r Pfaffian equation corresponding to perfect match-

ings on the set {i1, . . . , i2r} with i1 < . . . < i2r. The crossing monomial of p is the monomial

pi1,ir+1pi2,ir+2 . . . pir,i2r .

Theorem 4.3.2. [JW07, Theorem 2.1] There exists a term order ≺circ on Zn that selects

the crossing monomial as the lead term of the Pfaffian equations. Furthermore, the 2r×2r

Pfaffians form a Gröbner basis for I
{r−1}
2,n with respect to this term order and

in≺circ(I
{r−1}
2,n ) = ⟨pi1,ir+1pi2,ir+2 . . . pir,i2r ∶ 1 ≤ i1 < i2 < . . . < i2r ≤ n⟩.

We also have the following corollary.

Corollary 4.3.3. Let T be a binary phylogenetic X-tree and ω a term order for Zn

derived from T as above. Then the initial forms of the 2r × 2r Pfaffians with respect to ω

form a Gröbner basis for inω(I
{r−1}
2,n ) with respect to ≺circ and hence generate inω(I

{r−1}
2,n ).

Proof. Since all of our trees are circularly embedded, for 1 ≤ i < j < k < l ≤ n, the ω-

weight of pikpjl is greater than or equal to that of both pijpkl and pilpjk. Therefore, if we
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let p be the 2r×2r Pfaffian equation with monomials corresponding to perfect matchings

of the set {i1, . . . , i2r} with 1 ≤ i1 < i2 < . . . < i2r ≤ n, then inω(p) contains the term

pi1,ir+2pi2,ir+3 . . . pir+1,i2r . Thus, the term order ≺circ refines the weight vector ω [SS04]. The

result follows from [Stu96, Corollary 1.9].

One component of our proof of Theorem 4.1.4 will involve showing that for a weight

vector constructed from a circularly embedded binary phylogenetic [n]-tree, inω(I
{2}
2,n ) is

prime. In fact, we obtain the much stronger result below giving an entire class of prime

initial ideals for the Pfaffian ideals.

Theorem 4.3.4. Let ω be a weight vector constructed from a circular embedding of a

binary phylogenetic [n]-tree T . Then for all r, n ∈ N, inω(I
{r}
2,n ) is a prime ideal.

We will prove Theorem 4.3.4 using the prime-dimension approach and induction. We

restate here the lemma from Section 1.4.2 which formed the basis for the prime-dimension

approach.

Lemma 1.4.11. Let K be a field and J ⊂ K[x1, . . . , xn] be an ideal containing a poly-

nomial f = gx1 + h with g, h not involving x1 and g not a zero divisor modulo J . Let

J1 = J ∩K[x2, . . . , xn] be the elimination ideal. Then J is prime if and only if J1 is prime.

In order to apply Lemma 1.4.11 in our proof of Theorem 4.1.4, we will need the

following two lemmas.

Lemma 4.3.5. Let T be an (n+1)-leaf binary phylogenetic X-tree and ω a weight vector

constructed from T . If n ≥ 2r + 1, then for 2r < j ≤ n, there exists a polynomial in

inω(I
{r}
2,n+1) in which pj,n+1 occurs linearly.

Proof. Proving this lemma requires choosing a particular circular planar embedding of

the tree T which we now describe. If there exists a split A∣B in T such that #A =

r + 1, then circularly label the leaves in A clockwise by the labels {n + 1,1,2, . . . , r} and

then complete the circular labeling of T . Now consider the (2r + 2) × (2r + 2) Pfaffian

equation p ∈ I
{r}
2,n+1 that is the sum of monomials corresponding to perfect matchings

on the set {1,2, . . . ,2r, j, n + 1} with 2r < j ≤ n. As in Corollary 4.3.3, the monomial

p1,r+2p2,r+3 . . . pr−1,2rpr,jpr+1,n+1 appears in inω(p). Since T∣{r,r+1,j,n+1} contains the split

r(n + 1)∣(r + 1)j, ω(pr,jpr+1,n+1) = ω(pr,r+1pj,n+1). Therefore, inω(p) also contains the

monomial

p1,r+2p2,r+3 . . . pr−1,2rpr,r+1pj,n+1
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of equal ω weight, and so pj,n+1 occurs linearly in I
{r}
2,n+1.

If there does not exists a split A∣B in T with #A = r+1, then since T is binary, there

exists a split A∣B such that r + 1 < #A ≤ 2r. Choose such a split with #A as small as

possible.

Consider T∣A as a rooted tree and starting on the side of the root with the greater num-

ber of leaves (if one exists), circularly label the leaves by {n+1,1,2, . . . , r, r+1, . . . ,#A−1}.

Complete the labeling to a circular labeling of T . Choosing either of the edges adjacent

to the root in T∣A induces the split (n + 1)123 . . . k∣(k + 1) . . . (#A − 1) in T∣A. Notice also

that k < r. Otherwise, either the set {(n+1),1,2,3, . . . , k} labels a split of T with exactly

r + 1 leaves, which we assumed was not true, or it labels a split with between r + 1 and

2r leaves, contradicting that A was chosen so that #A was as small as possible.

As before, for 2r < j ≤ n, consider the Pfaffian generator that is the sum of monomials

corresponding to perfect matchings on the set {1, . . . ,2r, j, n+1}. Then inω(p) contains the

monomial m = p1,r+2p2,r+3 . . . pr−1,2rpr,jpr+1,n+1. The monomial pk,(k+r+1)p(r+1),(n+1) divides

m and we know that ω(pk,(r+1)p(k+r+1),(n+1)) = ω(pk,(k+r+1)p(r+1),(n+1)) since removing the

edge of T∣A adjacent to the root on the side labeled by leaves {(n+1),1,2, . . . , k} induces

the quartet (n+ 1)k∣(r + 1)(k + r + 1). Therefore, we can replace pk,(k+r+1)p(r+1),(n+1) in m

by the equal weight term pk,(r+1)p(k+r+1),(n+1) to produce a monomial m′ of inω(p).

Notice that now pr,jp(k+r+1),(n+1)∣m′. Since k ≥ (#A)/2−1 and r ≥ (#A)/2, it must be

that k+r+1 ≥ #A. Therefore, the edge that splits A∣B in T also splits r(n+1)∣j(k+r+1),

since the leaves in A are labeled by {n+1,1,2, . . . , r, r+1, . . . ,#A−1}. So we can replace

pr,jp(k+r+1),(n+1) in m′ with pr,(k+r+1)pj,(n+1) to produce another monomial of inω(p). Thus,

pj,n+1 occurs linearly in inω(p).

Lemma 4.3.6. If n ≥ 2r + 1 then for 2r < j ≤ n let inω(p) be the polynomial found in

Lemma 4.3.5 in which pj,n+1 occurs linearly. Then inω(p) = g ⋅ pj,n+1 + h with g, h not

involving pj,n+1 and g not a zero divisor modulo inω(I
{r}
2,n+1).

Proof. We write inω(p) = g ⋅ pj,n+1 + h and observe that the polynomial g is the sum

of monomials corresponding to perfect matchings on the set {1, . . . ,2r} with equal ω-

weight. In other words, g ∈ inω′(I
{r}
2,n ), where ω′ is the subvector of ω without coordinates

containing (n + 1) in the index. So we just need to show that g is not a zero divisor

modulo inω(I
{r}
2,n+1).

Recall the term order ≺circ from Theorem 4.3.2 with respect to which the Pfaffian
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equations form a Gröbner basis for inω(I
{r}
2,n+1). Then

in≺circ(g) = p1,r+1p2,r+2 . . . pr−2,2r−1pr,2r.

Suppose that there exists g′ /∈ inω(I
{r}
2,n+1) such that gg′ ∈ inω(I

{r}
2,n+1). Then choose such

a g′ with standard leading term with respect to the Gröbner basis given by ≺circ. Then

in≺circ(gg
′) = (p1,r+1p2,r+2 . . . pr−2,2r−1pr,2r)in≺circ(g

′),

and in≺circ(gg′) must be in in≺circ(I
{r}
2,n+1). Therefore, in≺circ(gg′) must be divisible by one

of the crossing monomials which are the lead terms of the (2r + 2) × (2r + 2) Pfaffian

equations. But if pij appears in the crossing monomial of a (2r + 2) × (2r + 2) Pfaffian

equation, then j−i ≥ r+1. This implies that in≺circ(g) is relatively prime to every crossing

monomial. Therefore, in≺circ(g′) must be in the leading term ideal of in≺circ(I
{r}
2,n+1) with

respect to ≺circ, which is a contradiction since we assumed it was standard.

Proof of Theorem 4.3.4. We will proceed by induction. Fix r ∈ N. For n < 2r + 1,

inω(I
{r}
2,n+1) = ⟨0⟩ which is prime.

Now suppose inω(I
{r}
2,n ) ⊆ Zn is prime and consider the ideal I

{r}
2,n+1 ⊆ Zn+1. First,

we show that (inω(I
{r}
2,n+1) ∩ Z

n) = inω′(I
{r}
2,n ), where again ω′ is the subvector of ω that

does not include coordinates with (n + 1) in the index. Define a grading on Zn+1 where

deg(pij) = 1 if j = (n + 1) and deg(pij) = 0 otherwise. Then Zn+1 =
∞
⊕
i=0

Zn+1
i and I

{r}
2,n+1 is

homogeneous with respect to this grading. It is true in general that for a homogeneous

ideal I contained in a graded ring R =
∞
⊕
i=0

Ri and a weight vector ω, that I =
∞
⊕
i=0

I ∩Ri

and

inω(I) =
∞
⊕
i=0

inω(I ∩Ri)

=
∞
⊕
i=0

inω(I) ∩Ri.

In our case, we have (inω(I
{r}
2,n+1) ∩Z

n+1
0 ) = inω(I

{r}
2,n+1 ∩Z

n+1
0 ). Since (I

{r}
2,n+1 ∩Z

n+1
0 ) = I

{r}
2,n

and Zn is precisely Zn+1
0 , the degree zero piece of Zn+1, (inω(I

{r}
2,n+1) ∩Z

n) = inω′(I
{r}
2,n ).

So now assume the statement is true for all integers less than or equal to n ≥ 2r + 2.

We note by Lemma 4.3.5 that each pj,n+1 appears in some equation of inω(I
{r}
2,n+1). Lemma

70



4.3.6 tells us that the coefficient of pj,n+1 is not a zero divisor modulo inω(I
{r}
2,n+1), but

this also implies that each coefficient is not a zero divisor modulo any elimination ideal

of inω(I
{r}
2,n+1). So now beginning with j = n, we eliminate pj,n+1 for 2r < j ≤ n from

inω(I
{r}
2,n+1). Importantly, the equation in which pj,n+1 occurs linearly found in Lemma

4.3.5 does not contain any variables of the form pk,n+1 for k > j and so is still contained

in the elimination ideal after we have eliminated all of these variables. Therefore, at

each step, we meet the conditions of Lemma 1.4.11, which implies that each successive

elimination ideal is prime if and only if inω(I
{r}
2,n+1) is prime.

After eliminating, we have the ideal inω(I
{r}
2,n+1) ∩Z

n[p1,n+1, . . . , p2r,n+1] which we will

now show is equal to inω(I
{r}
2,n+1)∩Z

n = inω(I
{r}
2,n ). In other words, we will show that after

eliminating {p2r+1,n+1, . . . , pn,n+1}, there are no equations involving any variable with n+1

in the index in the elimination ideal. Then by induction, the proof will be complete.

The dimension of I
{r}
2,n , and hence the dimension of all of its initial ideals, is 2rn−2r2−r

[KL80]. Since I
{r}
2,n+1 is prime, every irreducible component of inω(I

{r}
2,n+1) has dimension

2r(n + 1) − 2r2 − r [KS95]. The birational projection of Lemma 1.4.11 preserves the di-

mension of each component, which implies

dim(inω(I
{r}
2,n+1) ∩Z

n[p1,n+1, . . . , p2r,n+1]) = 2r(n + 1) − 2r2 − r = dim(inω(I
{r}
2,n )) + 2r.

Therefore, eliminating the remaining 2r variables must decrease the dimension of each

component by 2r, which implies that the variables in {p1,n+1, . . . , p2r,n+1} are free in

each component of inω(I
{r}
2,n+1) ∩ Z

n[p1,n+1, . . . , p2r,n+1]. We conclude that inω(I
{r}
2,n+1) ∩

Zn[p1,n+1, . . . , p2r,n+1] = inω′(I
{r}
2,n ).

4.3.2 Second Secants of the Plücker Tree Ideals

To address Conjecture 4.1.3 we first construct a simple bound on dim(J
{r}
T ).

Lemma 4.3.7. Let T be a tree with c cherries, then dim(J
{r}
T ) ≤ 2rn − 3r − (r − 1)c.

Proof. The variables corresponding to cherries do not appear in any of the binomials

generating JT . Thus, we can write V (JT ) = V ×Cc and V (JT ){r} = V {r} ×Cc, since Cc is

a linear space. The expected dimension of V {r} is r dim(V ) + (r − 1). However, JT being

homogeneous implies that V is a cone and that dim(V {r}) ≤ r dim(V ). Since they share

the same Hilbert series, the dimension of JT is equal to that of I2,n which is 2n−3 [KL80].
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Thus, we have

dim(V (JT )
{r}) ≤ r dim(V ) + c

= r(2n − 3 − c) + c.

= 2rn − 3r − (r − 1)c

Corollary 4.3.8. Conjecture 4.1.3 does not hold for any r.

Proof. Every initial ideal of I
{r}
2,n has dimension 2rn − 2r2 − r [KL80]. Therefore, it is

impossible for J
{r}
T = I

{r}
2,n if

2rn − 3r − (r − 1)c < 2rn − 2r2 − r

−(r − 1)c < −2r2 + 2r

c > 2r.

Thus, for any r, trees with more than 2r cherries serve as a counterexample.

Theorem 4.1.4 claims that when r = 2, trees with strictly more than 4 cherries are the

only obstructions. Before we begin the proof of Theorem 4.1.4 we will discuss the specific

structure of I
{2}
2,n and the initial ideals inω(I

{2}
2,n ). The ideal I

{2}
2,n is the vanishing ideal of

the set of n×n rank four skew-symmetric matrices and is generated by the 6× 6 Pfaffian

equations. There are (
n
6
) of these degree 3 equations each with 15 terms corresponding to

the perfect matchings on the 6-element subset of [n] to which the equation corresponds.

Theorem 4.3.2 tells us that the initial forms of these equations with respect to ω form a

Gröbner basis for inω(I
{2}
2,n ). Without loss of generality, let p be the 6×6 Pfaffian equation

for the set K = {1,2,3,4,5,6} ⊆ [n] and let T∣K be the restriction of T to the leaves of K.

Up to relabeling of the leaves, there are only two 6-leaf tree topologies and the structure

of inω(p) is completely determined by the topology of T∣K .

If T is the 6-leaf caterpillar tree with nontrivial splits 12∣3456, 123∣456, and 1234∣56,

then

inω(p) = p14p25p36 − p14p26p35 − p15p24p36 + p15p26p34 + p16p24p35 − p16p25p34.
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If T is the 6-leaf snowflake tree with nontrivial splits 12∣3456, 34∣1256, and 56∣1234, then

inω(p) =p14p25p36 − p14p26p35 − p15p24p36 + p13p25p46+

p16p24p35 − p13p26p45 + p15p23p46 − p16p23p45.

Thus, inω(I
{2}
2,n ) has a Gröbner basis consisting of (n6) equations each with either six or

eight terms. We call the n-leaf binary phylogenetic X-tree with exactly two cherries the n-

leaf caterpillar. Although the following theorem for caterpillar trees does not generalize to

a proof of Theorem 4.1.4, we include it because it is rather straightforward and establishes

one of the base cases for our inductive argument.

Theorem 4.3.9. Let C be an n-leaf caterpillar tree and ω ∈ R(n
2
) be a weight vector such

that inω(I2,n) = JC, then inω(I
{2}
2,n ) = J

{2}
C .

Proof. For a given term order, the initial ideal of a secant ideal is contained inside the

secant of the initial ideal [SS06], so we have the inclusion,

inω(I
{2}
2,n ) ⊆ (inω(I2,n))

{2} = J
{2}
C . (4.1)

Let P be the poset on the variables of Zn given by pij ≤ pkl if i ≤ k and j ≤ l and J(P ) the

monomial ideal generated by incomparable pairs pijpkl in P . There exists a term order

ω′ for which inω′(JC) = J(P ) [MS05, Theorem 14.16]. Taking initial ideals with respect

to ω′ in (1), we have

inω′(inω(I
{2}
2,n )) ⊆ inω′(J

{2}
C ) ⊆ (inω′(JC))

{2} = J(P ){2}. (4.2)

In fact, there exists ω′′ = ω+ εω′ such that inω′(inω(I
{2}
2,n )) = inω′′(I

{2}
2,n ) [Stu96, Propo-

sition 1.13]. It is also shown in [SS06] Example 4.13, that we can choose a term order ≺

for which in≺(I
{2}
2,n ) = J(P ){2}. This implies

HS(J(P ){2}, t) =HS(in≺(I
{2}
2,n ), t) =HS(inω′′(I

{2}
2,n )), t),

which gives equality all across (4.2). This further implies that

HS(J
{2}
C , t) =HS(inω′′(I

{2}
2,n ), t) =HS(inω(I

{2}
2,n ), t),
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giving equality in (4.1) and completing the proof.

As mentioned in the proof of Theorem 4.3.9, given any binary phylogenetic X-tree T

(not necessarily a caterpillar) and a weight vector ω such that inω(I2,n) = JT , we have the

inclusion inω(I
{2}
2,n ) ⊆ J

{2}
T . To complete the proof of Theorem 4.1.4, we will again use the

prime-dimension approach to show that this containment of ideals is actually equality

for trees with exactly 3 or 4 cherries. Lemma 4.3.4 establishes that inω(I
{2}
2,n ) is prime, so

it will suffice to show that for such trees dim(inω(I
{2}
2,n )) = dim(J

{2}
T ).

To prove the dimension result we will first obtain a lower bound on the dimension of

J
{2}
T . Just as in Chapters 2 and 3, we will use the tropical secant dimension approach.

To show the correspondence, note that the variety V (JT ) is an affine cone. Therefore,

V (JT )
{2} = V (JT ) + V (JT ) = {v1 + v2 ∶ v1, v2 ∈ V (JT )}.

As described in Section 4.3, JT is the Zariski closure of the monomial map φT ∶ Zn →

C[y]. Then φT (pij) is the square-free monomial parametrizing pij. Let αTij ∈ R2n−3 be

the 0/1 coefficient vector of φT (pij). Following the setup of Section 1.4.3 and Definition

1.4.12 we have a simplified version of Lemma 1.4.13.

Lemma 4.3.10. The dimension of V (JT ) + V (JT ) is at least the maximum, taken over

all v = (v1, v2) ∈ R2n−3 ⊕R2n−3, of the sum

dimR⟨D
T
1 (v)⟩R + dimR⟨D

T
2 (v)⟩R.

Lemma 4.3.11. Let T be an n-leaf binary phylogenetic X-tree with exactly 3 or 4 cher-

ries, then dim(J
{2}
T ) ≥ 4n − 10.

Proof. We will prove by induction on n that there exists a vector v = (v1, v2) ∈ R2n−3 ⊕

R2n−3 such that dimR⟨DT1 (v)⟩R = dimR⟨DT2 (v)⟩R = 2n−5. First, note that every tree with

exactly 3 cherries can be constructed by successively attaching leaves to the snowflake

tree so that the new leaf is not involved in a cherry. Every tree with exactly 4 cherries can

be constructed in the same manner from the unique 8-leaf tree with 4 cherries. By random

search, we can find vectors that give us the lower bound for these two trees establishing

our base cases. These vectors and the computations to verify the lower bounds can be

found in the Maple worksheet SecantDimension.mw at the website listed in Section 4.2.
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Assume the statement is true for all n-leaf binary phylogenetic X-trees and let T be

an (n+1)-leaf binary phylogenetic X-tree with exactly 3 or 4 cherries. Label T so that the

leaf labeled by (n+ 1) is not part of a cherry. Let R = T∣[n], by our inductive assumption,

there exists v = (v1, v2) ∈ R2n−3⊕R2n−3 such that dimR⟨DR1 (v)⟩R = dimR⟨DR2 (v)⟩R = 2n−5.

Our goal will be to construct a new vector w = (w1,w2) ∈ R2(n+1)−3 ⊕ R2(n+1)−3 so that

dimR⟨DT1 (w)⟩R = dimR⟨DT2 (w)⟩R = 2(n + 1) − 5.

When adding the (n + 1) leaf to R, we introduce “new” edges ea, eb, and en+1 and

eliminate the edge e. Let ua be the vertex of ea not shared with eb and likewise let ub be

the vertex of eb not shared with ea. Arbitrarily choose two leaves L1 and L2 such that

the path from these leaves to (n + 1) passes through ea. Also choose leaves L3 and L4

such that the path from these leaves to (n+ 1) passes through eb. Such leaves exist since

(n + 1) is not contained in a cherry. Figure 4.2 depicts the situation.

Figure 4.2: An example of the labeling scheme described in Lemma 4.3.11.

Delete the entry of v1 and that of v2 corresponding to the parameter ye to form

v′1, v
′
2 ∈ R2n−4. Define w1 = (v′1,w

a
1 ,w

b
1,w

n+1
1 ) and w2 = (v′2,w

a
2 ,w

b
2,w

n+1
2 ) where the entries

of w correspond to the edges of T in the obvious way.

Our goal will be to choose the six new vector entries so that s wins αTij at w if and

only if s wins αRij at v for 1 ≤ i < j ≤ n. Moreover, we will want both 1 and 2 to win one
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of {αTL1,n+1, α
T
L2,n+1} and {αTL3,n+1, α

T
L4,n+1}. First, we will see why this will guarantee that

dimR⟨DT
1 (w)⟩R = dimR⟨DT

2 (w)⟩R = 2(n + 1) − 5.

Form the matrix A(T ) with rows equal to all the vectors αTij . Let

ω =

⎛
⎜
⎜
⎜
⎝

ω(e1)

⋮

ω(e2(n+1)−3)

⎞
⎟
⎟
⎟
⎠

,

be a vector of edge lengths for T . Since αTij ⋅ ω gives us the distance between leaves i

and j in T , A(T )ω determines a metric on the leaves of T . By the Tree-Metric theorem

([PS04, SS03]) ω is the unique solution to A(T )x = A(T )ω. Therefore, the rank of A(T )

is 2n − 3. Thus, if we can uniquely recover all of the edge lengths assigned to T from a

matrix, the matrix has rank at least 2(n + 1) − 3.

Let ω′ be a vector of edge lengths for R where the lengths of edges shared between

R and T are the same and ω′(e) = ω(ea) + ω(eb). Form the matrix MR
s (v) with rows

equal to the vectors in DRs (v). By induction, this matrix has rank equal to 2n − 5. Let

MR
s (v)′ be the matrix MR

s (v) augmented with two additional columns from A(R) so

that rank(MR
s (v)′) = 2n−3. Since this matrix is full rank, there is again a unique solution

to

MR
s (v)′x =MR

s (v)′ω′.

This implies that we can uniquely determine the lengths of all 2n − 3 edges in R. As a

corollary, we can recover the lengths of all edges in T that are also in R and ω(ea)+ω(eb),

the sum of the lengths of edges ea and eb in T .

Without loss of generality, suppose we have constructed w = (w1,w2) so that MT
1 (v)

contains all of the columns fromMR
1 (v) and columns corresponding to αTL1,n+1 and αTL3,n+1.

Then let MT
1 (v)′ be the matrix that contains all of the columns from MR

1 (v)′ and columns

corresponding to αTL1,n+1 and αTL3,n+1. These columns enable us to recover the lengths of

the paths from L1 to (n+1) and from L3 to (n+1) in T . We will now show how this will

enable us to determine the lengths of the remaining edges, en+1, ea, and eb uniquely. As

explained, being able to determine all of the edge lengths of T from MT
1 (v)′ shows that

MT
1 (v)′ has rank 2(n + 1) − 3.

Since we know the length of the path from L1 to (n+ 1) and the length of every edge

between L1 and (n + 1) except en+1 and ea, we can determine ω(en+1) + ω(ea). Likewise,

we know the length of the path from L3 to (n+ 1) and the length of every edge between
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L3 and (n+ 1) except en+1 and eb, so we can recover ω(en+1)+ω(eb). Combined with our

knowledge of ω(ea) + ω(eb) we can determine the lengths of en+1, ea, and eb. Uniqueness

implies that the augmented matrix MT
1 (w)′ has rank 2(n+1)−3 and so MT

1 (w) has rank

2(n + 1) − 5 as desired. If we have also chosen w = (w1,w2) so that MT
2 (v) contains all

of the columns from MR
2 (v) and columns corresponding to αTL2,n+1 and αTL4,n+1, then the

same is true for MT
2 (w), and the theorem is complete.

It remains to show that we can actually choose the six vector entries wa1 ,w
b
1,w

n+1
1 ,

wa2 ,w
b
2, and wn+1

2 in the manner specified. First, note that every edge in T along the path

from ua to L1 or L2 and ub to L3 or L4 is contained in R. Therefore, we let asi be the

vs-weight of the path from ua to Li with i = 1,2 and we have:

w1 ⋅ α
T
L1,n+1 = a

1
1 +w

a
1 +w

n+1
1 ,

w2 ⋅ α
T
L1,n+1 = a

2
1 +w

a
2 +w

n+1
2 ,

w1 ⋅ α
T
L2,n+1 = a

1
2 +w

a
1 +w

n+1
1 ,

w2 ⋅ α
T
L2,n+1 = a

2
2 +w

a
2 +w

n+1
2 .

Recall that our goal is for both 1 and 2 to win one of {αTL1,n+1, α
T
L2,n+1} and

{αTL3,n+1, α
T
L4,n+1}. Rearranging, we would like to have

a1
1 +w

a
1 +w

n+1
1 < a2

1 +w
a
2 +w

n+1
2 ,

a1
2 +w

a
1 +w

n+1
1 > a2

2 +w
a
2 +w

n+1
2

⇒ (wa1 +w
n+1
1 ) − (wa2 +w

n+1
2 ) < a2

1 − a
1
1

(wa1 +w
n+1
1 ) − (wa2 +w

n+1
2 ) > a2

2 − a
1
2

.

If we let (wa1 +w
n+1
1 ) = (a2

1 − a
1
1)/2 and (wa2 +w

n+1
2 ) = −(a2

2 − a
1
2)/2 then (wa1 +w

n+1
1 ) −

(wa2 +w
n+1
2 ) is just the average of (a2

1−a
1
1) and (a2

2−a
1
2). For w chosen sufficiently generic,

the inequalities above may both be switched, but regardless, we will have sent the vectors

{αTL1,n+1, α
T
L2,n+1} into different matrices. By symmetry, we let bsi be the vs-weight of the

path from ub to Li for i = 3,4. Then we will be done if the following system has a solution:
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wa1 +w
n+1
1 = (a2

1 − a
1
1)/2

wa2 +w
n+1
2 = −(a2

2 − a
1
2)/2

wb1 +w
n+1
1 = (b2

1 − b
1
1)/2

wb2 +w
n+1
2 = −(b2

2 − b
1
2)/2

wa1 +w
b
1 = v

e
1

wa2 +w
b
2 = v

e
2.

The last two equations are necessary so that s wins αTij at w if and only if s wins αRij
at v. The resulting matrix is full rank.

Finally, we are able to complete our proof.

Proof of Theorem 4.1.4. Corollary 4.3.8 shows that if T has five or more cherries then

inω(I
{2}
2,n ) /= J

{2}
T .

Let T be a binary phylogenetic X-tree with fewer than 5 cherries. By Lemma 4.3.11,

dim(J
{2}
T ) ≥ 4n − 10, and since inω(I

{2}
2,n ) ⊆ J

{2}
T , and dim(inω(I

{2}
2,n )) = 4n − 10,

dim(inω(I
{2}
2,n )) = dim(J

{2}
T ). By Theorem 4.3.4, inω(I

{2}
2,n ) is prime and of the same di-

mension as J
{2}
T , which implies inω(I

{2}
2,n ) = J

{2}
T .

4.3.3 Beyond the Second Secant

Based on the proof of Theorem 4.1.4 and the result of Lemma 4.3.4, we have the following

corollary which is a modification of the statement of Conjecture 4.1.3.

Corollary 4.3.12. Let T be an n-leaf binary phylogenetic X-tree, ω ∈ Rn a weight vector,

and τ ∈ {±1}(n
2
) a sign vector such that JT = τ ⋅ inω(I2,n). Then τ ⋅ inω(I

{r}
2,n ) = J

{r}
T if and

only if dim(J
{r}
T ) = 2rn − 2r2 − r.

We have already seen that Conjecture 4.1.3 is not true for trees with more than 2r

cherries. However, as r increases, the number of cherries is not the only obstruction. The

presence of other tree structures factors into a bound on the possible dimension of J
{r}
T .

Removing an edge from a binary phylogenetic X-tree creates two connected compo-

nents each of which is a rooted binary phylogenetic K-tree for some K ⊆X. If one of these
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rooted trees is a k-leaf rooted caterpillar then we call this rooted subtree a k-cluster of

T . Cherries, then, may alternatively be referred to as 2-clusters. We let ck be the number

of k-clusters in a tree. If leaves i and j are contained in an s-cluster, then we let k be the

smallest such s and call the variable pij a k-cluster variable for T .

Example 4.3.13. Let T be the tree in Figure 4.3. Then T has three 3-clusters on the

leaves {1,2,3}, {4,5,6}, and {11,12,13}. The set of 2-cluster variables is

{p1,2, p4,5, p7,8, p9,10, p11,12}

and the set of 3-cluster variables is

{p1,3, p2,3, p4,6, p5,6, p11,13, p12,13}.

Notice that the way clusters are nested, the number of k-cluster variables in a tree

will be (k − 1)ck.

Figure 4.3: A 13-leaf tree with five 2-clusters and three 3-clusters.

Lemma 4.3.14. Let ck be the number of k-clusters in T , then

dim(J
{r}
T ) ≤ 2rn − 3r −

r

∑
k=2

(r − k + 1)ck.

Proof. Let ω be a weight vector such that JT = inω(I2,n). Let JET be the ideal constructed
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by eliminating all k-cluster variables from JT for 1 ≤ k ≤ r − 1, and embedding this ideal

in Zn. Define V (JET ) = W and note that V (JT ) ⊆ W and dim(J
{r}
T ) ≤ dim(I(W ){r}).

There are no restrictions on the ∑
r
k=2(k−1)ci eliminated variables in W , so we may write

W = W ′ × C∑r
k=2(k−1)ci . Since C∑r

k=2(k−1)ck is a linear space, W {r} = W ′{r} × C∑r
k=2(k−1)ck .

We also observe that W ′ is a cone since it is a coordinate projection of a cone. Thus,

dim(W {r}) ≤ r dim(W ′{r}) +∑
r
k=2(k − 1)ck.

Now we seek a bound for dim(W ′{r}). Choose a specific k-cluster in T , define a

grading with every k-cluster variable in that k-cluster having weight one and every other

variable having weight zero. Observe that each binomial generator of JT is homogeneous

with respect to this grading. Thus, the equations in any reduced Gröbner basis for JT

with respect to any monomial order contain at least two distinct k-cluster variables

from the designated k-cluster if they contain any at all. If not, by homogeneity, there

exists an equation in the reduced Gröbner basis in which pij, a k-cluster variable from

the designated k-cluster, can be factored. Since JT is prime, that implies that pij is zero,

which is evidently not true from the parameterization. Therefore, choosing an elimination

order and eliminating any (k−2) of the designated k-cluster variables from JT eliminates

all of the (k−1) designated k-cluster variables. Thus, projecting away all of the k-cluster

variables from a given k-cluster in V (JT ) yields a variety of at least one dimension less.

Applying the same argument to each k-cluster implies dim(W ′) ≤ 2n − 3 − ∑
r
k=2 ck, and

the result follows.

In the case where r = 2, this is just a restatement of Lemma 4.3.7. When r = 3, we have

dim(I
{3}
2,n ) = 6n−21, so this tells us that it is impossible for J

{3}
T = I

{3}
2,n when 2c2 + c3 > 12.

Example 4.3.15. Let T be the 13-leaf tree pictured in Figure 4.3. Then c2 = 5, c3 = 3,

and 2c2 + c3 = 13. Lemma 4.3.14 tells us that dim(J
{3}
T ) ≤ 66 < 67 = dim(I

{3}
2,n ) so that

J
{3}
T /= I

{3}
2,n . Evaluating the Jacobian matrix at a point we find that dim(J

{3}
T ) = 66.

Finally, one might wonder if we can modify Conjecture 4.1.3 as follows.

Conjecture 4.3.16. Let T be an n-leaf binary phylogenetic X-tree, ω ∈ Rn a weight

vector, and τ ∈ {±1}(n
2
) a sign vector such that JT = τ ⋅ inω(I2,n). Then τ ⋅ inω(I

{r}
2,n ) = J

{r}
T

if and only if
r

∑
k=2

(r − k + 1)ck < 2r2 − 2r.
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We have investigated dim(J
{r}
T ) for r = 3 and r = 4 and several trees up to 18 leaves.

By evaluating the Jacobian matrix at random points, we have found in each case that the

conjecture holds. While this evidence supports Conjecture 4.3.14, to prove it rigorously,

one might like to utilize induction as we did in Lemma 4.3.11. For example, when r = 3,

there exists a finite set of trees with 2c2 + c3 ≤ 12 from which every tree with 2c2 + c3 ≤ 12

can be constructed by attaching leaves outside of the clusters to one of the trees in this

set. We could verify the conjecture for all of the trees in this set and then proceed by

induction.

However, there are two difficulties. First, the number and size of the trees in the base

case becomes unwieldy quickly. Consider that for r = 3, we would now have to establish

the dimension of the 12-leaf trees constructed by attaching a cherry to each of the vertices

in the snowflake and the 6-leaf caterpillar, among others. Secondly, we would have to show

that attaching a new leaf increases the rank of each of the 2r vector partitions by two.

In the proof of Lemma 4.3.11, for 1 ≤ s ≤ 2, we constructed ws so that s won a direction

corresponding to a path between the (n + 1) leaf and a leaf from each side of the split

induced by removing the edge where the (n + 1) leaf was attached. For the r-secant, we

would need to do the same thing for 1 ≤ s ≤ r, which would require that there are at

least r leaves on both sides of the induced split. There would be many trees that we

would have to consider where this is not the case. Even when it is the case, before we

were able to construct w from v to dictate the new winning directions. For r = 3, we have

found vectors that induce partitions of the correct rank for a certain tree that can not be

similarly modified to induce partitions of the correct rank when a new leaf is attached.
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